Skip to main content
Log in

Biodiversity, photosynthetic mode, and ecosystem services differ between native and novel ecosystems

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Human activities have caused non-native plant species with novel ecological interactions to persist on landscapes, and it remains controversial whether these species alter multiple aspects of communities and ecosystems. We tested whether native and exotic grasslands differ in species diversity, ecosystem services, and an important aspect of functional diversity (C3:C4 proportions) by sampling 42 sites along a latitudinal gradient and conducting a controlled experiment. Exotic-dominated grasslands had drastically lower plant diversity and slightly higher tissue N concentrations and forage quality compared to native-dominated sites. Exotic sites were strongly dominated by C4 species at southern and C3 species at northern latitudes with a sharp transition at 36–38°, whereas native sites contained C3:C4 mixtures. Large differences in C3:C4 proportions and temporal niche partitioning were found between native and exotic mixtures in the experiment, implying that differences in C3:C4 proportions along the latitudinal gradient are caused partially by species themselves. Our results indicate that the replacement of native- by exotic-dominated grasslands has created a management tradeoff (high diversity versus high levels of certain ecosystem services) and that models of global change impacts and C3/C4 distribution should consider effects of exotic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ascher JS, Pickering J (2012) Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). Available at http://www.discoverlife.org/mp/20q?guide=Apoidea_species. Last Accessed 31 May 2012

  • Barnes PW, Tieszen LL, Ode DJ (1983) Distribution, production, and diversity of C3- and C4- dominated communities in a mixed prairie. Can J Bot 61:741–751

    Article  Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58. doi:10.1038/nature11018

    Article  CAS  PubMed  Google Scholar 

  • Chalcraft DR, Williams JW, Smith MD, Willig MR (2004) Scale dependence in the relationship between species richness and productivity: the role of species turnover. Ecology 85:2701–2708

    Article  Google Scholar 

  • Collatz GJ, Berry JA, Clark JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114:441–454. doi:10.1007/s004420050468

    Article  Google Scholar 

  • Daily GC (1997) Introduction: what are ecosystem services? In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, pp 1–10

    Google Scholar 

  • Diggs GM, Lipscomb BL, O’Kennon RJ (1999) Shinner’s and Mahler’s illustrated flora of North Central Texas. Botanical Research Institute of Texas

  • Doll JE, Brink GE, Cates RL Jr, Jackson RD (2009) Effects of native grass restoration management on above- and belowground pasture production and forage quality. J Sustain Agric 33:512–527. doi:10.1080/10440040902997702

    Article  Google Scholar 

  • Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, C4 Grasses Consortium (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–591. doi:10.1126/science.1177216

    Article  CAS  PubMed  Google Scholar 

  • Eilers LJ, Roosa DM (1994) The vascular plants of Iowa: an annotated checklist and natural history. University of Iowa Press, Iowa City

    Google Scholar 

  • Ellis EC (2011) Anthropogenic transformation of the terrestrial biosphere. Philos Trans R Soc A 369:1010–1035. doi:10.1098/rsta.2010.0331

    Article  Google Scholar 

  • Ellis EC, Antill EC, Kreft H (2012) All is not loss: plant biodiversity in the Anthropocene. PLoS One 7:e30535. doi:10.1371/journal.pone.0030535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Epstein HE, Lauenroth WK, Burke IC, Coffin DP (1997) Productivity patterns of C3 and C4 functional types in the US Great Plains. Ecology 78:722–731. doi:10.1890/0012-9658(1997)078[0722:PPOCAC]2.0.CO;2

    Google Scholar 

  • Epstein HE, Gill RA, Paruelo JM, Lauenroth WK, Jia GJ, Burke IC (2002) The relative abundance of three plant functional types in temperature grasslands and shrublands of North and South America: effects of projected climate change. J Biogeogr 29:875–888. doi:10.1046/j.1365-2699.2002.00701.x

    Article  Google Scholar 

  • Flora of North America Editorial Committee (eds) (1993) Flora of North America North of Mexico, 16 + vols. New York and Oxford

  • Fridley JD (2012) Extended leaf phenology and the autumn niche in deciduous forest invasions. Nature 486:359–362. doi:10.1038/nature11056

    Article  Google Scholar 

  • Gleason HA, Cronquist A (1991) Manual of vascular plants of Northeastern United States and adjacent Canada. New York Botanical Garden

  • Great Plains Flora Association (1986) Flora of the Great Plains. University Press of Kansas, Lawrence

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecol Biogeogr 15:1–7. doi:10.1111/j.1466-822x.2006.00212.x

    Article  Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Isbell FI, Wilsey BJ (2011a) Rapid biodiversity declines in both ungrazed and intensely grazed exotic grasslands. Plant Ecol 212:1663–1674. doi:10.1007/s11258-011-9939-6

    Article  Google Scholar 

  • Isbell FI, Wilsey BJ (2011b) Increasing native, but not exotic, biodiversity increases aboveground productivity in ungrazed and intensely grazed grasslands. Oecologia 165:771–778. doi:10.1007/s00442-010-1877-9

    Article  PubMed  Google Scholar 

  • Isbell FI, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202. doi:10.1038/nature10282

    Article  CAS  PubMed  Google Scholar 

  • Kulmatiski A (2006) Exotic plants establish persistent communities. Plant Ecol 187:261–275. doi:10.1007/s11258-006-9140-5

    Article  Google Scholar 

  • Levine JM, Vilà M, Antonio CMD, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond B Biol 270:775–781. doi:10.1098/rspb.2003.2327

    Article  Google Scholar 

  • Liao C, Peng R, Luo Y, Zhoa X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177(706–714):22. doi:10.1111/j.1469-8137.2007.02290.x

    Google Scholar 

  • Littell RC, Stroup WW, Freund RJ (2004) SAS for linear models. SAS Institute, Cary

    Google Scholar 

  • Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27:19–26. doi:10.1016/j.tree.2011.08.006

    Article  PubMed  Google Scholar 

  • Mack RN, Lonsdale WM (2001) Humans as global plant dispersers: getting more than we bargained for. Bioscience 51:95–102. doi:10.1641/0006-3568(2001)051[0095:HAGPDG]2.0.CO;2

    Google Scholar 

  • Mascaro J, Hughes RF, Schnitzer SA (2012) Novel forests maintain ecosystem processes after the decline of native tree species. Ecol Monogr 82:221–228. doi:10.1890/11-1014.1

    Article  Google Scholar 

  • Millennium Ecosystem Assessment, Ecosystems and Human Well-Being: Biodiversity Synthesis (2005) World Resources Institute, Washington, DC

  • Monson RK, Williams GJ III (1982) A correlation between photosynthetic temperature adaptation and seasonal phenology patterns in the shortgrass prairie. Oecologia 54:58–62

    Article  Google Scholar 

  • Morandin LA, Winston ML, Abbott VA, Franklin MT (2007) Can pastureland increase wild bee abundance in agriculturally intense areas? Basic Appl Ecol 8:117–124. doi:10.1016/j.baae.2006.06.003

    Article  Google Scholar 

  • Nelson E, Mendoza B, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7:4–11. doi:10.1890/080023

    Article  Google Scholar 

  • Ode DJ, Tieszen LL, Lerman JC (1980) The seasonal contribution of C3 and C4 plant species to primary production in a mixed prairie. Ecology 61:1304–1311

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi:10.1016/j.tree.2010.01.007

    Article  PubMed  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737. doi:10.1111/j.1365-2486.2011.02636.x

    Article  Google Scholar 

  • Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science 336:589–592. doi:10.1126/science.1217909

    Article  CAS  PubMed  Google Scholar 

  • Rout ME, Callaway RM (2009) An invasive plant paradox. Science 324:734–735. doi:10.1126/science.1173651

    Article  CAS  PubMed  Google Scholar 

  • Rundel PW (1978) The ecological distribution of C4 and C3 grasses in the Hawaiian Islands. Oecologia 45:354–359

    Article  Google Scholar 

  • Sage RF, Monson RK (1999) C4 Plant Biology. Academic Press, Dan Diego

    Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770

    Article  CAS  PubMed  Google Scholar 

  • Samson F, Knopf F (1994) Prairie conservation in North America. Bioscience 44:418–421. doi:10.2307/1312365

    Article  Google Scholar 

  • Scurlock JMO, Johnson K, Olson RJ (2002) Estimating net primary productivity from grassland biomass dynamics measurements. Glob Change Biol 8:736–753. doi:10.1046/j.1365-2486.2002.00512.x

    Article  Google Scholar 

  • Sensenig RL, Demment MW, Laca EA (2010) Allometric scaling predicts preferences forburned patches in a guild of East African grazers. Ecology 91:2898–2907. doi:10.1890/09-1673.1

    Article  PubMed  Google Scholar 

  • Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database. Available at http://soildatamart.nrcs.usda.gov. Last accessed 16 May 2012

  • Tallamy DW, Ballard M, D’Amico V (2010) Can alien plants support generalist insect herbivores? Biol Invasions 12:2285–2292. doi:10.1007/s10530-009-9639-5

    Article  Google Scholar 

  • Tallis H, Kareiva P, Marvier M, Chang A (2008) An ecosystem services framework to support both practical conservation and economic development. Proc Natl Acad Sci USA 105:9457–9464. doi:10.1073/pnas.0705797105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teeri JA, Stowe LG (1976) Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23:1–12. doi:10.1007/BF00351210

    Google Scholar 

  • Tieszen LL, Reed BC, Bliss NB, Wylie BK, DeJong DD (1997) NDVI, C3 and C4 production, and distribution in Great Plains grassland land cover classes. Ecol Appl 7:59–78. doi:10.1890/1051-0761(1997).007[0059:NCACPA]2.0.CO;2

    Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) Influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302. doi:10.1126/science.277.5330.1300

    Article  CAS  Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245. doi:10.1111/j.1461-0248.2009.01418.x

    Article  PubMed  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. doi:10.1111/j.1461-0248.2011.01628.x

    Article  PubMed  Google Scholar 

  • Vitousek PM (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:7–13

    Article  Google Scholar 

  • von Fischer JC, Tieszen LL, Schimel DS (2008) Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Glob Change Biol 14:1–15. doi:10.1111/j.1365-2486.2008.01552.x

    Google Scholar 

  • Waller SS, Lewis JK (1979) Occurrence of C3 and C4 photosynthetic pathways in North American grasses. J Range Manage 32:12–28

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Callaway RM, Van der Putten WH (2011) Terrestrial ecosystem responses to species gains and losses. Science 332:1273–1277. doi:10.1126/science.1197479

    Article  CAS  PubMed  Google Scholar 

  • Westphal C, Bommarco R, Carré G, Lamborn E, Morison N, Petanidou T, Potts SG, Roberns SPM, Szentgyörgyi H, Tscheulin T, Vaissière BE, Woyciechowski M, Biesmeijer JC, Kunin WE, Settele J, Steffan-Dewenter I (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671. doi:10.1890/07-1292.1

    Article  Google Scholar 

  • Wilsey BJ, Chalcraft DR, Bowles CM, Willig MR (2005) Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 86:1178–1184. doi:10.1890/04-0394

    Article  Google Scholar 

  • Wilsey BJ, Teaschner TB, Daneshgar PP, Isbell FI, Polley HW (2009) Biodiversity maintenance mechanisms differ between native and novel exotic-dominated communities. Ecol Lett 12:432–442. doi:10.1111/j.1461-0248.2009.01298.x

    Article  PubMed  Google Scholar 

  • Wilsey BJ, Daneshgar PP, Polley HW (2011) Biodiversity, phenology and temporal niche differences between native- and novel exotic-dominated grasslands. Perspect Plant Ecol 13:265–276. doi:10.1016/j.ppees.2011.07.002

    Article  Google Scholar 

  • Winfree R, Kremen C (2009) Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc R Soc Lond B Biol 276:229–237. doi:10.1098/rspb.2008.0709

    Article  Google Scholar 

  • Yatskievych G (2006) Steyermark’s Flora of Missouri. Missouri Botanical Garden Press, St. Louis, and Missouri Department of Conservation, Jefferson City

  • Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci USA 107:1443–1446. doi:10.1073/pnas.0906829107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was developed under STAR Fellowship Assistance Agreement no. 91722701-0 awarded by the U.S. Environmental Protection Agency (EPA). It has not been formally reviewed by the EPA. The views expressed in this publication are solely those of the authors, and EPA does not endorse any products or commercial services mentioned in this publication. The field experiment was funded by the NSF (DEB-0639417). We thank The Nature Conservancy, Minnesota Department of Natural Resources, U.S. Fish and Wildlife Service, Iowa Department of Natural Resources, Guthrie County Conservation Board (Iowa), Missouri Department of Conservation, University of Kansas Field Station, Oklahoma State University, Oklahoma Department of Wildlife Conservation, USDA ARS, and private landowners for providing sites. Jim Raich and Brad Nelson provided laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leanne M. Martin or Brian J. Wilsey.

Additional information

Communicated by Joy K. Ward.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 33 kb)

Supplementary material 2 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, L.M., Polley, H.W., Daneshgar, P.P. et al. Biodiversity, photosynthetic mode, and ecosystem services differ between native and novel ecosystems. Oecologia 175, 687–697 (2014). https://doi.org/10.1007/s00442-014-2911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2911-0

Keywords

Navigation