Skip to main content
Log in

Scale-dependent niche axes of arbuscular mycorrhizal fungi

  • Community Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) are mutualistic with most species of plants and are known to influence plant community diversity and composition. To better understand natural plant communities and the ecological processes they control it is important to understand what determines the distribution and diversity of AMF. We tested three putative niche axes: plant species composition, disturbance history, and soil chemistry against AMF species composition to determine which axis correlated most strongly with a changing AMF community. Due to a scale dependency we were not able to absolutely rank their importance, but we did find that each correlated significantly with AMF community change at our site. Among soil properties, pH and NO3 were found to be especially good predictors of AMF community change. In a similar analysis of the plant community we found that time since disturbance had by far the largest impact on community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison VJ, Miller RM, Jastrow JD, Matamala R, Zak DR (2005) Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Sci Soc Am J 69:1412–1421

    Article  CAS  Google Scholar 

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122

    Article  Google Scholar 

  • Betz RF (1986) One decade of research in prairie restoration at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois. In: Clambey GK, Pemble RH (eds) The prairie: past, present, and future. Proceeding of the Ninth North American Prairie Conference. Tri-College University Center for Environmental Studies, Fargo, pp 179–185

    Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 84:71–82

    Article  Google Scholar 

  • Bever JD, Schultz PA, Miller RM, Gades L, Jastrow JD (2003) Prairie mycorrhizal fungi inoculant may increase native plant diversity on restored sites (Illinois). Ecol Restor 21:311–312

    Article  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Chuang TY, Ko WH (1983) Propagule size—its relation to longevity and reproductive capacity. Soil Biol Biochem 15:269–274

    Article  Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265

    Article  Google Scholar 

  • Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–87

    Article  PubMed  Google Scholar 

  • Daft MJ, Hogarth BG (1983) Competitive interactions amongst 4 species of Glomus on maize and onion. Trans Br Mycol Soc 80:339-345

    Google Scholar 

  • Declerck S, D’Or D, Bivort C, de Souza FA (2004) Development of extraradical mycelium of Scutellospora reticulata under root-organ culture: spore production and function of auxiliary cells. Mycol Res 108:84–92

    Article  PubMed  Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544

    Article  Google Scholar 

  • Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetation 69:57–68

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH et al (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377

    Article  Google Scholar 

  • Fuhlendorf SD, Engle DM (2004) Application of the fire-grazing interaction to restore a shifting mosaic on tallgrass prairie. J Appl Ecol 41:604–614

    Article  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams & Wilkins, Baltimore

    Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2001) Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93:1186–1194

    Article  Google Scholar 

  • Hartnett DC, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187–1195

    Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  PubMed  CAS  Google Scholar 

  • Hetrick BAD, Kitt DG, Wilson GT (1988) Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Can J Bot 66:1376–1380

    Article  Google Scholar 

  • Hole FD (1981) Effects of animals on soil. Geoderma 25:75–112

    Article  Google Scholar 

  • Hutchinson GE (1957) Population studies—animal ecology and demography—concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    Article  CAS  Google Scholar 

  • Johnson NC, Zak DR, Tilman D, Pfleger FL (1991) Dynamics of vesicular-arbuscular mycorrhizae during old field succession. Oecologia 86:349–358

    Article  Google Scholar 

  • Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73:2034–2042

    Article  Google Scholar 

  • Johnson NC et al (2006) From Lilliput to Brobdingnag: extending models of mycorrhizal function across scales. Bioscience 56:889–900

    Article  Google Scholar 

  • Jongman RH, Braak CJFT, Van Tongeren OFR (1995) Data analysis in community and landscape ecology, New edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Karlis D, Xekalaki E (2000) A simulation comparison of several procedures for testing the Poisson assumption. J R Stat Soc Ser D Stat 49:355–382

    Article  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  PubMed  CAS  Google Scholar 

  • Kruskal JB (1964a) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27

    Article  Google Scholar 

  • Kruskal JB (1964b) Nonmetrick multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  • Landis FC, Gargas A, Givnish TJ (2004) Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytol 164:493–504

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Elsevier, Amsterdam

    Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Levins R, Culver D (1971) Regional coexistence of species and competition between rare species (mathematical model/habitable patches). Proc Natl Acad Sci USA 68:1246–1248

    Article  PubMed  Google Scholar 

  • McGraw AC, Hendrix JW (1984) Host and soil fumigation effects on spore population densities of species of endonaceous mycorrhizal fungi. Mycologia 76:122–131

    Article  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Article  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular–arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  Google Scholar 

  • Miller RM, Miller SP, Jastrow JD, Rivetta CB (2002) Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii. New Phytol 155:149–162

    Article  CAS  Google Scholar 

  • Molofsky J, Bever JD, Antonovics J, Newman TJ (2002) Negative frequency dependence and the importance of spatial scale. Ecology 83:21–27

    Article  Google Scholar 

  • Moore JC, McCann K, Setala H, De Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857

    Article  Google Scholar 

  • Okanen J, Kindt R, O’Hara RB (2005) Vegan: community ecology package. http://cc.oulu.fi/~jarioksa

  • Ostfeld RS, Pickett STA, Sackack M, Likens GE (1997) Defining the Scientific Issues. In: Pickett STA, Ostfeld RS, Shachak M, Likens GE (eds) The Ecological Basis of Convservation. Chapman & Hall, New York, pp 3–10

    Google Scholar 

  • Pielou EC (1977) Mathematical ecology, 2nd edn. Wiley, New York

    Google Scholar 

  • Potthoff RF, Whitting M (1966) Testing for homogeneity. 2. Poisson distribution. Biometrika 53:183-190

    Google Scholar 

  • Pringle A, Bever JD (2002) Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot 89:1439–1446

    Article  Google Scholar 

  • Renker C et al (2004) Structure, dynamics and restoration of plant communities: do arbuscular mycorrhizae matter? In: Temperton VM, Hobbs R, Nuttle T, Hallen S (eds) Assembly rules and restoration ecology—briding the gap between theory and practice. Island Press, Washington, pp 189–229

    Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the identification of VA-mcorrhizal fungi. Synergistic, Gainesville

    Google Scholar 

  • Schultz PA, Miller RM, Jastrow JD, Rivetta CV, Bever JD (2001) Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. Am J Bot 88:1650–1656

    Article  Google Scholar 

  • Smith SE, Read DJ, Harley JL (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. http://www.R-project.org

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16

    Article  Google Scholar 

  • Turnbull LA, Coomes D, Hector A, Rees M (2004) Seed mass and the competition/colonization trade-off: competitive interactions and spatial patterns in a guild of annual plants. J Ecol 92:97–109

    Article  Google Scholar 

  • van der Heijden EW, Kuyper TW (2001) Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? Plant Soil 230:161–174

    Article  Google Scholar 

  • van der Heijden MGA, Scheublin TR (2007) Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytol 174:244–250

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Google Scholar 

  • van der Heijden MGA et al (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Vandenkoornhuyse P et al (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    Article  PubMed  CAS  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • Vogelsang KM, Reynolds HL, Bever JD (2005) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Fermi National Environmental Research Park for allowing us to sample the prairie restorations and A. C. McGraw for the spore identification. The research was supported by the United States Department of Energy, Office of Science, Office of Biological and Environmental Research, and Climate Change Research Division under contract W-31-109-Eng-38. The experiments discussed within this manuscript comply with the current laws of the United States of America and the state of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Fitzsimons.

Additional information

Communicated by Jeremy Burdon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (PDF 73.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzsimons, M.S., Miller, R.M. & Jastrow, J.D. Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158, 117–127 (2008). https://doi.org/10.1007/s00442-008-1117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1117-8

Keywords

Navigation