Skip to main content

Advertisement

Log in

Dental mesenchymal stem cells and neuro-regeneration: a focus on spinal cord injury

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Regenerative medicine is a branch of translational research that aims to reestablish irreparably damaged tissues and organs by stimulating the body’s own repair mechanisms via the implantation of stem cells differentiated into specialized cell types. A rich source of adult stem cells is located inside the tooth and is represented by human dental pulp stem cells, or hDPSCs. These cells are characterized by a high proliferative rate, have self-renewal and multi-lineage differentiation properties and are often used for tissue engineering and regenerative medicine. The present review will provide an overview of hDPSCs and related features with a special focus on their potential applications in regenerative medicine of the nervous system, such as, for example, after spinal cord injury. Recent advances in the identification and characterization of dental stem cells and in dental tissue engineering strategies suggest that bioengineering approaches may successfully be used to regenerate districts of the central nervous system, previously considered irreparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe S, Yamaguchi S, Amagasa T (2007) Multilineage cells from apical pulp of human tooth with immature apex. Oral Sci Int 4:45–58

    Google Scholar 

  • Ahmed NE-MB, Murakami M, Hirose Y, Nakashima M (2016) Therapeutic potential of dental pulp stem cell secretome for Alzheimer’s disease treatment: an in vitro study. Stem Cells Int 2016:8102478

    PubMed Central  Google Scholar 

  • Aliaghaei A, Boroujeni ME, Ahmadi H, Bayat A-H, Tavirani MR, Abdollahifar MA, Pooyafar MH, Mansouri V (2019) Dental pulp stem cell transplantation ameliorates motor function and prevents cerebellar atrophy in rat model of cerebellar ataxia. Cell Tissue Res 376:179-187

    PubMed  Google Scholar 

  • Alvarez-Saavedra M, De Repentigny Y, Yang D, O’Meara RW, Yan K, Hashem LE, Racacho L, Ioshikhes I, Bulman DE, Parks RJ (2016) Voluntary running triggers VGF-mediated oligodendrogenesis to prolong the lifespan of Snf2h-null ataxic mice. Cell Rep 17:862–875

    CAS  PubMed  Google Scholar 

  • Askari N, Yaghoobi MM, Shamsara M, Esmaeili-Mahani S (2014) Human dental pulp stem cells differentiate into oligodendrocyte progenitors using the expression of Olig2 transcription factor. Cells Tissues Organs 200:93–103

    CAS  PubMed  Google Scholar 

  • Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W (2011a) Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcif Tissue Int 88:130–141

    CAS  PubMed  Google Scholar 

  • Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W (2011b) Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 56:709–721

    CAS  PubMed  Google Scholar 

  • Beertsen W, McCulloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontology 2000 13:20–40

    CAS  PubMed  Google Scholar 

  • Bonaventura G, La Cognata V, Iemmolo R, Zimbone M, Contino A, Maccarrone G, Failla B, Barcellona ML, Conforti FL, D’Agata V, Cavallaro S (2018) Ag-NPs induce apoptosis, mitochondrial damages and MT3/OSGIN2 expression changes in an in vitro model of human dental-pulp-stem-cells-derived neurons. Neurotoxicology 67:84–93

    CAS  PubMed  Google Scholar 

  • Bray A, Cevallos R, Gazarian K, Lamas M (2014) Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin. Neuroscience 280:142–155

    CAS  PubMed  Google Scholar 

  • Bueno C, Martínez-Morga M, Martínez S (2019) Non-proliferative adult neurogenesis in neural crest-derived stem cells isolated from human periodontal ligament. bioRxiv https://doi.org/10.1101/325613

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    CAS  PubMed  Google Scholar 

  • Choo AM, Liu J, Dvorak M, Tetzlaff W, Oxland TR (2008) Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Exp Neurol 212:490–506

    PubMed  Google Scholar 

  • Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Crowe MS (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3:73–76

    CAS  PubMed  Google Scholar 

  • d’Aquino R, Papaccio G, Laino G, Graziano A (2008) Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 4:21–26

    PubMed  Google Scholar 

  • De Almeida JFA, Chen P, Henry MA, Diogenes A (2014) Stem cells of the apical papilla regulate trigeminal neurite outgrowth and targeting through a BDNF-dependent mechanism. Tissue Eng A 20:3089–3100

    Google Scholar 

  • Demircan PC, Sariboyaci AE, Unal ZS, Gacar G, Subasi C, Karaoz E (2011) Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy 13:1205–1220

    CAS  PubMed  Google Scholar 

  • do Couto Nicola F, Marques MR, Odorcyk F, Arcego DM, Petenuzzo L, Aristimunha D, Vizuete A, Sanches EF, Pereira DP, Maurmann N (2017) Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res 1663:95–105

    Google Scholar 

  • Fortino VR, Chen RS, Pelaez D, Cheung HS (2014) Neurogenesis of neural crest-derived periodontal ligament stem cells by EGF and bFGF. J Cell Physiol 229:479–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gnanasegaran N, Govindasamy V, Abu Kasim N (2016) Differentiation of stem cells derived from carious teeth into dopaminergic-like cells. Int Endod J 49:937–949

    CAS  PubMed  Google Scholar 

  • Gnanasegaran N, Govindasamy V, Mani V, Kasim NHA (2017) Neuroimmunomodulatory properties of DPSCs in an in vitro model of Parkinson’s disease. IUBMB Life 69:689–699

    CAS  PubMed  Google Scholar 

  • Huang AHC, Snyder BR, Cheng PH, Chan AW (2008) Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells 26:2654–2663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang GT-J, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S (2009) Stem/progenitor cell–mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng A 16:605–615

    Google Scholar 

  • Ishkitiev N, Yaegaki K, Calenic B, Nakahara T, Ishikawa H, Mitiev V, Haapasalo M (2010) Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod 36:469–474

    PubMed  Google Scholar 

  • Karaoz E, Okcu A, Ünal ZS, Subasi C, Saglam O, Duruksu G (2013) Adipose tissue-derived mesenchymal stromal cells efficiently differentiate into insulin-producing cells in pancreatic islet microenvironment both in vitro and in vivo. Cytotherapy 15:557–570

    CAS  PubMed  Google Scholar 

  • Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Massironi SMG, Pereira LV, Caplan AI, Cerruti HF (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184:105–116

    CAS  PubMed  Google Scholar 

  • Király M, Kádár K, Horváthy DB, Nardai P, Rácz GZ, Lacza Z, Varga G, Gerber G (2011) Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int 59:371–381

    PubMed  Google Scholar 

  • Kisiel AH, McDuffee LA, Masaoud E, Bailey TR, Esparza Gonzalez BP, Nino-Fong R (2012) Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am J Vet Res 73:1305–1317

    CAS  PubMed  Google Scholar 

  • Koch TG, Heerkens T, Thomsen PD, Betts DH (2007) Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol 7:26

    PubMed  PubMed Central  Google Scholar 

  • Kolar MK, Itte VN, Kingham PJ, Novikov LN, Wiberg M, Kelk P (2017) The neurotrophic effects of different human dental mesenchymal stem cells. Sci Rep 7:12605

    PubMed  PubMed Central  Google Scholar 

  • Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci 96:10711–10716

    CAS  PubMed  Google Scholar 

  • Lei M, Li K, Li B, Gao L-N, Chen F-M, Jin Y (2014) Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials 35:6332–6343

    CAS  PubMed  Google Scholar 

  • Li D, Zou X-Y, El-Ayachi I, Romero LO, Yu Z, Iglesias-Linares A, Cordero-Morales JF, Huang GT-J (2019) Human dental pulp stem cells and gingival mesenchymal stem cells display action potential capacity in vitro after neuronogenic differentiation. Stem Cell Rev Rep 15:67–81

    CAS  PubMed  Google Scholar 

  • Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu GT, Liang A, Liu S (2015) Concise reviews: Characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells 33:627–638

    CAS  PubMed  Google Scholar 

  • Luo L, Albashari AA, Wang X, Jin L, Zhang Y, Zheng L, Xia J, Xu H, Zhao Y, Xiao J, He Y, Ye Q (2018) Effects of transplanted heparin-poloxamer hydrogel combining dental pulp stem cells and bFGF on spinal cord injury repair. Stem Cells Int 2018:2398521

    PubMed  PubMed Central  Google Scholar 

  • Martens W, Wolfs E, Struys T, Politis C, Bronckaers A, Lambrichts I (2012) Expression pattern of basal markers in human dental pulp stem cells and tissue. Cells Tissues Organs 196:490–500

    CAS  PubMed  Google Scholar 

  • Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J, Lambrichts I (2014) Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J 28:1634–1643

    PubMed  PubMed Central  Google Scholar 

  • Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2017) Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair. Stem Cells 35:61–67

    CAS  Google Scholar 

  • Mita T, Furukawa-Hibi Y, Takeuchi H, Hattori H, Yamada K, Hibi H, Ueda M, Yamamoto A (2015) Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 293:189–197

    CAS  PubMed  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci 100:5807–5812

    CAS  PubMed  Google Scholar 

  • Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann K (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165

    CAS  PubMed  Google Scholar 

  • Mrozik K, Gronthos S, Shi S, Bartold PM (2010) A method to isolate, purify, and characterize human periodontal ligament stem cells. Oral biology, vol 666. Springer, pp 269-284

  • Najimi M, Berardis S, El-Kehdy H, Rosseels V, Evraerts J, Lombard C, El Taghdouini A, Henriet P, van Grunsven L, Sokal EM (2017) Human liver mesenchymal stem/progenitor cells inhibit hepatic stellate cell activation: in vitro and in vivo evaluation. Stem Cell Res Ther 8:131

    PubMed  PubMed Central  Google Scholar 

  • Niehage C, Karbanová J, Steenblock C, Corbeil D, Hoflack B (2016) Cell surface proteome of dental pulp stem cells identified by label-free mass spectrometry. PLoS One 11:e0159824

    PubMed  PubMed Central  Google Scholar 

  • Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238:120–132

    CAS  PubMed  Google Scholar 

  • Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA (2004) Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci 19:2388–2398

    PubMed  Google Scholar 

  • Nuti N, Corallo C, Chan B, Ferrari M, Gerami-Naini B (2016) Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep 12:511–523

    CAS  PubMed  Google Scholar 

  • Ohkoshi S, Hara H, Hirono H, Watanabe K, Hasegawa K (2017) Regenerative medicine using dental pulp stem cells for liver diseases. World J Gastrointest Pharmacol Ther 8:1

    PubMed  PubMed Central  Google Scholar 

  • Otabe K, Muneta T, Kawashima N, Suda H, Tsuji K, Sekiya I (2012) Comparison of gingiva, dental pulp, and periodontal ligament cells from the standpoint of mesenchymal stem cell properties. Cell Med 4:13–21

    PubMed  PubMed Central  Google Scholar 

  • Ren H, Sang Y, Zhang F, Liu Z, Qi N (2016) Chen Y (2016) Comparative analysis of human mesenchymal stem cells from umbilical cord, dental pulp, and menstrual blood as sources for cell therapy. Stem Cells Int

  • Rodríguez-Lozano FJ, Bueno C, Insausti CL, Meseguer L, Ramirez M, Blanquer M, Marin N, Martínez S, Moraleda JM (2011) Mesenchymal stem cells derived from dental tissues. Int Endod J 44:800–806

    PubMed  Google Scholar 

  • Roozafzoon R, Lashay A, Vasei M, Ai J, Khoshzaban A, Keshel SH, Barabadi Z, Bahrami H (2015) Dental pulp stem cells differentiation into retinal ganglion-like cells in a three dimensional network. Biochem Biophys Res Commun 457:154–160

    CAS  PubMed  Google Scholar 

  • Roubelakis MG, Pappa KI, Bitsika V, Zagoura D, Vlahou A, Papadaki HA, Antsaklis A, Anagnou NP (2007) Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 16:931–952

    CAS  PubMed  Google Scholar 

  • Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 122:80–90

    CAS  PubMed  Google Scholar 

  • Schuh EM, Friedman MS, Carrade DD, Li J, Heeke D, Oyserman SM, Galuppo LD, Lara DJ, Walker NJ, Ferraro GL (2009) Identification of variables that optimize isolation and culture of multipotent mesenchymal stem cells from equine umbilical-cord blood. Am J Vet Res 70:1526–1535

    PubMed  Google Scholar 

  • Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 76:319–370

    CAS  PubMed  Google Scholar 

  • Sedgley CM, Botero TM (2012) Dental stem cells and their sources. Dent Clin 56:549–561

    Google Scholar 

  • Shi W (2015) Lung mesenchymal stem cells. stem cells, tissue engineering and regenerative medicine. World Scientific, pp 331-336

  • Shimojima C, Takeuchi H, Jin S, Parajuli B, Hattori H, Suzumura A, Hibi H, Ueda M, Yamamoto A (2016) Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J Immunol:1501457

  • Sonoda S, Tomoda E, Tanaka Y, Yamaza T (2015) Properties and possibilities of human dental pulp-derived stem cells. Arch Stem Cell Res 2:1012

    Google Scholar 

  • Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B-M, Zhang C, Liu H, Gronthos S, Wang C-Y, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1:e79

    PubMed  PubMed Central  Google Scholar 

  • Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT-J (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171

    PubMed  PubMed Central  Google Scholar 

  • Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926

    PubMed  Google Scholar 

  • Sultan N, Amin LE, Zaher AR, Scheven BA, Grawish ME (2019) Dental pulp stem cells: Novel cell-based and cell-free therapy for peripheral nerve repair. World J Stomatol 7:1–19

    Google Scholar 

  • Taghipour Z, Karbalaie K, Kiani A, Niapour A, Bahramian H, Nasr-Esfahani MH, Baharvand H (2011) Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev 21:1794–1802

    PubMed  Google Scholar 

  • Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–643

    CAS  PubMed  Google Scholar 

  • Ullah I, Park J-M, Kang Y-H, Byun J-H, Kim D-G, Kim J-H, Kang D-H, Rho G-J, Park B-W (2017) Transplantation of human dental pulp-derived stem cells or differentiated neuronal cells from human dental pulp-derived stem cells identically enhances regeneration of the injured peripheral nerve. Stem Cells Dev 26:1247–1257

    CAS  PubMed  Google Scholar 

  • Ulrich D, Muralitharan R, Gargett CE (2013) Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther 13:1387–1400

    CAS  PubMed  Google Scholar 

  • Urraca N, Memon R, El-Iyachi I, Goorha S, Valdez C, Tran QT, Scroggs R, Miranda-Carboni GA, Donaldson M, Bridges D, Reiter LT (2015) Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders. Stem Cell Res 15:722–730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S (2009) Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 219:667–676

    CAS  PubMed  Google Scholar 

  • Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    PubMed  Google Scholar 

  • Wang J, Wang X, Sun Z, Wang X, Yang H, Shi S, Wang S (2010) Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 19:1375–1383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Jia Y, Liu J, Zhai J, Cao N, Yue W, He H, Pei X (2017) Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer's disease. Cell Biol Int 41:639–650

    CAS  PubMed  Google Scholar 

  • Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294:1933–1936

    CAS  PubMed  Google Scholar 

  • Xiao L, Nasu M (2014) From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells. Stem Cells Cloning: Adv Appl 7:89

    CAS  Google Scholar 

  • Yalvac M, Ramazanoglu M, Rizvanov A, Sahin F, Bayrak O, Salli U, Palotas A, Kose G (2010) Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo-and neurogenesis. Pharmacogenom J 10:105

    CAS  Google Scholar 

  • Yamamoto T, Osako Y, Ito M, Murakami M, Hayashi Y, Horibe H, Iohara K, Takeuchi N, Okui N, Hirata H (2016) Trophic effects of dental pulp stem cells on schwann cells in peripheral nerve regeneration. Cell Transplant 25:183–193

    PubMed  Google Scholar 

  • Yang C, Li X, Sun L, Guo W, Tian W (2017) Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J Neural Eng 14:026005

    PubMed  Google Scholar 

  • Yao S, Pan F, Prpic V, Wise G (2008) Differentiation of stem cells in the dental follicle. J Dent Res 87:767–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeichner-David M, Oishi K, Su Z, Zakartchenko V, Chen LS, Arzate H, Bringas P Jr (2003) Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn 228:651–663

    CAS  PubMed  Google Scholar 

  • Zhang J, Lu X, Feng G, Gu Z, Sun Y, Bao G, Xu G, Lu Y, Chen J, Xu L (2016) Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy. Cell Tissue Res 366:129–142

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Bruno Failla (Department of Pharmaceutical Sciences, Section of Biochemistry, University of Catania, Catania, Italy) for the recruitment of the biological material and Cristina Calì, Alfia Corsino, Maria Patrizia D’Angelo and Francesco Marino for their administrative and technical assistance.

Funding

This work was supported by a grant (CIP 2014.IT.05.SFOP.014/3/10.4/9.2.10/0008) from the European Social Fund operational programme for the Sicily region (Italy) "Development and application of biosensoristic technologies in genomics".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Cavallaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonaventura, G., Incontro, S., Iemmolo, R. et al. Dental mesenchymal stem cells and neuro-regeneration: a focus on spinal cord injury. Cell Tissue Res 379, 421–428 (2020). https://doi.org/10.1007/s00441-019-03109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03109-4

Keywords

Navigation