Skip to main content

Advertisement

Log in

Prolonged high fat diet ingestion, obesity, and type 2 diabetes symptoms correlate with phenotypic plasticity in myenteric neurons and nerve damage in the mouse duodenum

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Symptoms of diabetic gastrointestinal dysmotility indicate neuropathy of the enteric nervous system. Long-standing diabetic enteric neuropathy has not been fully characterized, however. We used prolonged high fat diet ingestion (20 weeks) in a mouse model to mimic human obese and type 2 diabetic conditions, and analyzed changes seen in neurons of the duodenal myenteric plexus. Ganglionic and neuronal size, number of neurons per ganglionic area, density indices of neuronal phenotypes (immunoreactive nerve cell bodies and varicosities per ganglion or tissue area) and nerve injury were measured. Findings were compared with results previously seen in mice fed the same diet for 8 weeks. Compared to mice fed standard chow, those on a prolonged high fat diet had smaller ganglionic and cell soma areas. Myenteric VIP- and ChAT-immunoreactive density indices were also reduced. Myenteric nerve fibers were markedly swollen and cytoskeletal protein networks were disrupted. The number of nNOS nerve cell bodies per ganglia was increased, contrary to the reduction previously seen after 8 weeks, but the density index of nNOS varicosities was reduced. Mice fed high fat and standard chow diets experienced an age-related reduction in total neurons, with bias towards neurons of sensory phenotype. Meanwhile, ageing was associated with an increase in excitatory neuronal markers. Collectively, these results support a notion that nerve damage underlies diabetic symptoms of dysmotility, and reveals adaptive ENS responses to the prolonged ingestion of a high fat diet. This highlights a need to mechanistically study long-term diet-induced nerve damage and age-related impacts on the ENS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amos AF, McCarty DJ, Zimmet P (1997) The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 14(Suppl 5):S1–S85

    PubMed  Google Scholar 

  • Anitha M, Gondha C, Sutliff R et al (2006) GDNF rescues hyperglycemia induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest 116:344–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Azan G, Low WC, Wendelschafer-Crabb G et al (2011) Evidence for neural progenitor cells in the human adult enteric nervous system. Cell Tissue Res 344:217–225

    Article  PubMed  Google Scholar 

  • Bagyánszki M, Bódi N (2012) Diabetes-related alterations in the enteric nervous system and its microenvironment. World J Diabetes 3:80–93

    Article  PubMed Central  PubMed  Google Scholar 

  • Baudry C, Reichardt F, Marchix J et al (2012) Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor. J Physiol 590:533–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brock C, Søfteland E, Gunterberg V et al (2013) Diabetic autonomic neuropathy affects symptom generation and brain-gut axis. Diabetes Care 36:3698–3705

    Article  PubMed Central  PubMed  Google Scholar 

  • Byrtzer P, Talley J, Leemon M et al (2001) Prevalence of Gastrointestinal Symptoms Associated With Diabetes Mellitus. Arch Intern Med 161:189–1996

    Article  Google Scholar 

  • Camilleri M, Malagelada JR (1984) Abnormal intestinal motility in diabetics with the gastroparesis syndrome. Eur J Clin Invest 14:420–427

    Article  CAS  PubMed  Google Scholar 

  • Cellek S, Qu W, Schmidt AM, Moncada S (2004) Synergistic action of advanced glycation and products and endogenous nitric oxide leads to neuronal apoptosis in vitro: A new insight into selective nitrergic neuropathy in diabetes. Diabetologia 47:331–339

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekharan B, Anitha M, Blatt R et al (2011) Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil 23(131–138):e26

    Google Scholar 

  • El-Salhy M, Sandström O, Holmlund F (1999) Age-induced changes in the enteric nervous system in the mouse. Mech Ageing Dev 107:93–103

    Article  CAS  PubMed  Google Scholar 

  • Faussone-Pellegrini M, Grover M, Pasricha P et al (2012) Ultrastructural differences between diabetic and idiopathic gastroparesis. J Cell Mol Med 16:1573–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fox J, Barthold S, Davisson M (2006) The Mouse in Biomedical Research: Normative Biology, Husbandry, and Models. Academic, New York

  • Furlan M, de Miranda NM, Sant’ana Dde M, Molinari S (1999) Number and size of myenteric neurons of the duodenum of adult rats with acute diabetes. Arq Neuropsiquiatr 57:740–745

    Article  CAS  PubMed  Google Scholar 

  • Furness JB (2008) The enteric nervous system: Normal functions and enteric neuropathies. Neurogastroenterol Motil 20:32–38

    Article  PubMed  Google Scholar 

  • Furness JB (2010) Enteric Nervous System. Blackwell, Oxford

  • Giaroni C, De Ponti F, Cosentino M et al (1999) Plasticity in the enteric nervous system. Gastroenterology 117:1438–1458

    Article  CAS  PubMed  Google Scholar 

  • Gomes OA, de Souza RR, Liberti EA (1997) A preliminary investigation of the effects of aging on the nerve cell number in the myenteric ganglia of the human colon. Gerontology 43:210–217

    Article  CAS  PubMed  Google Scholar 

  • Jack M, Wright D (2012) Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Transl Res 159:355–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karaosmanoglu T, Aygun B, Wade P, Gershon M (1996) Regional differences in the number of neurons in the myenteric plexus of the guinea pig small intestine and colon: an evaluation of markers used to count neurons. Anat Rec 244:470–480

    Article  CAS  PubMed  Google Scholar 

  • Knowles CH, De Giorgio R, Kapur RP et al (2009) Gastrointestinal neuromuscular pathology: guidelines for histological techniques and reporting on behalf of the Gastro 2009 International Working Group. Acta Neuropathol 118:271–301

    Article  PubMed  Google Scholar 

  • Kunze WA, Furness JB (1999) The enteric nervous system and regulation of intestinal motility. Annu Rev Physiol 61:117–142

    Article  CAS  PubMed  Google Scholar 

  • Laranjeira C, Sandgren K, Kessaris N et al (2011) Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest 121:3412–3424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LePard KJ (2005) Choline acetyltransferase and inducible nitric oxide synthase are increased in myenteric plexus of diabetic guinea pig. Auton Neurosci 118:12–24

    Article  CAS  PubMed  Google Scholar 

  • Lopes GS, Smaili SS, Neto AC et al (2007) Aging-induced decrease of cholinergic response and calcium sensitivity on rat jejunum contractions. J Gerontol A 62:264–270

    Article  Google Scholar 

  • Nezami B, Mwangi S, Lee J et al (2014) MicroRNA 375 mediates palmitate657 induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Gastroenterology 146:473–83.e3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papanas N, Ziegler D (2012) Prediabetic Neuropathy: Does It Exist? Curr Diab Rep 12:376–383

    Article  PubMed  Google Scholar 

  • Pasricha PJ, Pehlivanov ND, Gomez G et al (2008) Changes in the gastric enteric nervous system and muscle: A case report on two patients with diabetic gastroparesis. BMC Gastroenterol 8:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Phillips RJ, Powley TL (2007) Innervation of the gastrointestinal tract: Patterns of aging. Auton Neurosci Basic Clin 136:1–19

    Article  Google Scholar 

  • Phillips RJ, Kieffer EJ, Powley TL (2004) Loss of glia and neurons in the myenteric plexus of the aged Fischer 344 rat. Anat Embryol (Berl) 209:19–30

    Article  Google Scholar 

  • Qu ZD, Thacker M, Castelucci P et al (2008) Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 334:147–161

    Article  CAS  PubMed  Google Scholar 

  • Rivera LR, Leung C, Pustovit RV et al (2014) Damage to enteric neurons occurs in mice that develop fatty liver disease but not diabetes in response to a high-fat diet. Neurogastroenterol Motil 26:1188–1199

    Article  CAS  PubMed  Google Scholar 

  • Sang Q, Young HM (1996) Chemical coding of neurons in the myenteric plexus and external muscle of the small and large intestine of the mouse. Cell Tissue Res 284:39–53

    Article  CAS  PubMed  Google Scholar 

  • Sang Q, Young HM (1998) The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. Anat Rec 251:185–199

    Article  CAS  PubMed  Google Scholar 

  • Sang Q, Williamson S, Young HM (1997) Projections of chemically identified myenteric neurons of the small and large intestine of the mouse. J Anat 190(Pt 2):209–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Savidge TC (2011) S-nitrosothiol signals in the enteric nervous system: lessons learnt from big brother. Front Neurosci 5:31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt H, Riemann JF, Schmid A, Sailer D (1984) Ultrastructure of diabetic autonomic neuropathy of the gastrointestinal tract. Klin Wochenschr 62:399–405

    Article  CAS  PubMed  Google Scholar 

  • Shotton HR, Lincoln J (2006) Diabetes only affects nitric oxide synthase containing myenteric neurons that do not contain heme oxygenase 2. Brain Res 1068:248–256

    Article  CAS  PubMed  Google Scholar 

  • Smyth S, Heron A (2006) Diabetes and obesity: the twin epidemics. Nat Med 12:75–80

    Article  CAS  PubMed  Google Scholar 

  • Spangeus A, El-Salhy M (2001) Myenteric plexus of obese diabetic mice (an animal model of human type 2 diabetes). Histol Histopathol 16:159–165

    CAS  PubMed  Google Scholar 

  • Spangeus A, Suhr O, El-Salhy M (2000) Diabetic state affects the innnervation of gut in an animal model of human type 1 diabetes. Histol Histopathol 15:739–744

    CAS  PubMed  Google Scholar 

  • Stenkamp-Strahm CM, Kappmeyer AJ, Schmalz JT et al (2013a) High-fat diet ingestion correlates with neuropathy in the duodenum myenteric plexus of obese mice with symptoms of type 2 diabetes. Cell Tissue Res 354:381–394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stenkamp-Strahm C, Patterson S, Boren J et al (2013b) High-fat diet and age dependent effects on enteric glial cell populations of mouse small intestine. Auton Neurosci 177:199–210

  • Surendran S, Kondapaka SB (2005) Altered expression of neuronal nitric oxide synthase in the duodenum longitudinal muscle-myenteric plexus of obesity induced diabetes mouse: implications on enteric neurodegeneration. Biochem Biophys Res Commun 338:919–922

    Article  CAS  PubMed  Google Scholar 

  • Tan LL, Bornstein JC, Anderson CR (2010) The neurochemistry and innervation patterns of extrinsic sensory and sympathetic nerves in the myenteric plexus of the C57Bl6 mouse jejunum. Neuroscience 166:564–579

    Article  CAS  PubMed  Google Scholar 

  • Thrasivoulou C, Soubeyre V, Ridha H et al (2006) Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell 5:247–257

    Article  CAS  PubMed  Google Scholar 

  • Voss U, Sand E, Olde B, Ekblad E (2013) Enteric neuropathy can be induced by high fat diet in vivo and palmitic acid exposure in vitro. PLoS ONE 8:e81413

    Article  PubMed Central  PubMed  Google Scholar 

  • Voss U, Turesson MF, Robaye B et al (2014) The enteric nervous system of P2Y13 receptor null mice is resistant against high-fat-diet- and palmitic-acid induced neuronal loss. Purinergic Signal. doi:10.1007/s11302-014-9408-5

    PubMed Central  PubMed  Google Scholar 

  • Voukali E, Shotton HR, Lincoln J (2011) Selective responses of myenteric neurons to oxidative stress and diabetic stimuli. Neurogastroenterol Motil 23:964–e411

    Article  CAS  PubMed  Google Scholar 

  • Wade PR (2002) Aging and neural control of the GI tract. I. Age-related changes in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 283:G489–G495

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Pitchumoni CS, Chandrarana K, Shah N (2008) Increased prevalence of symptoms of gastroesophageal reflux diseases in type 2 diabetics with neuropathy. World J Gastroenterol 14:709–712

    Article  PubMed Central  PubMed  Google Scholar 

  • Yarandi SS, Srinivasan S (2014) Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil 26:611–624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the University of Idaho, IBEST and Idaho INBRE (NIH Grant Nos. P20 RR016454 and P20 GM103408). Work done by M. Gericke was supported by Deutsche Forschungsgemeinschaft grant number DFG-SFB 1052/1: ‘Obesity mechanisms’ (projects A04). The authors would like to acknowledge Joe T. Schmaltz, Rachel Siemens, Sky Hembree and Spencer Dean for their assistance with staining and quantification procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onesmo B. Balemba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 88.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenkamp-Strahm, C.M., Nyavor, Y.E.A., Kappmeyer, A.J. et al. Prolonged high fat diet ingestion, obesity, and type 2 diabetes symptoms correlate with phenotypic plasticity in myenteric neurons and nerve damage in the mouse duodenum. Cell Tissue Res 361, 411–426 (2015). https://doi.org/10.1007/s00441-015-2132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2132-9

Keywords

Navigation