Skip to main content
Log in

Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, Idiosepius notoides

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cephalopods are unique among mollusks in exhibiting an elaborate central nervous system (CNS) and remarkable cognitive abilities. Despite a profound knowledge of the neuroanatomy and neurotransmitter distribution in their adult CNS, little is known about the expression of neurotransmitters during cephalopod development. Here, we identify the first serotonin-immunoreactive (5-HT-ir) neurons during ontogeny and describe the establishment of the 5-HT system in the pygmy squid, Idiosepius notoides. Neurons that are located dorsally to each optic lobe are the first to express 5-HT, albeit only when the lobular neuropils are already quite elaborated. Later, 5-HT is expressed in almost all lobes, with most 5-HT-ir cell somata appearing in the subesophageal mass. Further lobes with numerous 5-HT-ir cell somata are the subvertical and posterior basal lobes and the optic and superior buccal lobes. Hatching squids possess more 5-HT-ir neurons, although the proportions between the individual brain lobes remain the same. The majority of 5-HT-ir cell somata appears to be retained in the adult CNS. The overall distribution of 5-HT-ir elements within the CNS of adult I. notoides resembles that of adult Octopus vulgaris and Sepia officinalis. The superior frontal lobe of all three species possesses few or no 5-HT-ir cell somata, whereas the superior buccal lobe comprises many cell somata. The absence of 5-HT-ir cell somata in the inferior buccal lobes of cephalopods and the buccal ganglia of gastropods may constitute immunochemical evidence of their homology. This integrative work forms the basis for future studies comparing molluscan, lophotrochozoan, ecdysozoan, and vertebrate brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6
Fig. 7

Similar content being viewed by others

References

  • Audesirk TE, McCaman RE, Willows DAO (1979) The role of serotonin in the control of pedal ciliary activity by identified neurons in Tritonia diomedea. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 62:87–91

    Article  Google Scholar 

  • Baratte S, Bonnaud L (2009) Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis. J Comp Neurol 517:539–549

    Article  CAS  PubMed  Google Scholar 

  • Baker MW, Croll RP (1996) Modulation of in vivo neuronal sprouting by serotonin in the adult CNS of the snail. Cell Mol Neurobiol 16:562–576

    Article  Google Scholar 

  • Barbas D, DesGroseillers L, Castellucci VF, Carew TJ, Marinesco S (2003) Multiple serotonergic mechanisms contributing to sensitization in Aplysia: evidence of diverse serotonin receptor subtypes. Learn Mem 10:373–386

    Article  PubMed  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  CAS  PubMed  Google Scholar 

  • Boyer C, Maubert E, Charnay Y, Chichery R (2007) Distribution of neurokinin A-like and serotonin immunoreactivities within the vertical lobe complex in Sepia officinalis. Brain Res 1133:53–66

    Article  CAS  PubMed  Google Scholar 

  • Barlow JJ (1977) Comparative biochemistry of the central nervous system. Symp Zool Soc Lond 38:325–346

    CAS  Google Scholar 

  • Budelmann BU (1995) The cephalopod nervous system: what evolution has made of the molluscan design. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates. An evolutionary and comparative approach. Birkhaeuser, Basel, pp 115–138

    Google Scholar 

  • Bullock TH (1965) Mollusca: Cephalopoda. In: Bullock TH, Horridge GA (eds) Structure and function in the nervous systems of invertebrates. Freeman, San Francisco, pp 1433–1515

    Google Scholar 

  • Buznikov GA, Nikitina LA, Voronezhskaya EE, Bezuglov VV, Willows DAO, Nezlin LP (2003) Localization of serotonin and its possible role in early embryos of Tritonia diomedea (Mollusca: Nudibranchia). Cell Tiss Res 311:259–266

    CAS  Google Scholar 

  • Croll RP (1988) Distribution of monoamines within the central nervous system of the juvenile pulmonate snail, Achatina fulica. Brain Res 460:29–49

    Article  CAS  PubMed  Google Scholar 

  • Croll RP, Chiasson BJ (1989) Postembryonic development of serotoninlike immunoreactivity in the central nervous system of the snail Lymnaea stagnalis. J Comp Neurol 280:122–142

    Article  CAS  PubMed  Google Scholar 

  • Croll RP, Lo RYS (1986) Distribution of serotonin-like immunoreactivity in the central nervous system of the periwinkle, Littorina littorea (Gastropoda, Prosobranchia, Mesogastropoda). Biol Bull 171:426–440

    Article  CAS  Google Scholar 

  • Dickel L, Chichery MP, Chichery R (1997) Postembryonic maturation of the vertical lobe complex and early development of predatory behavior in the cuttlefish (Sepia officinalis). Neurobiol Learn Mem 67:150–160

    Article  CAS  PubMed  Google Scholar 

  • Dickel L, Chichery MP, Chichery R (2001) Increase of learning abilities and maturation of the vertical lobe complex during postembryonic development in the cuttlefish, Sepia. Dev Psychobiol 39:92–98

    Article  CAS  PubMed  Google Scholar 

  • Dickinson AJG, Croll RP (2003) Development of the larval nervous system of the gastropod Ilyanassa obsoleta. J Comp Neurol 466:197–218

    Article  PubMed  Google Scholar 

  • Dickinson AJG, Nason J, Croll RP (1999) Histochemical localization of FMRFamide, serotonin and catecholamines in embryonic Crepidula fornicata (Gastropoda, Prosobranchia). Zoomorphology 119:49–62

    Article  Google Scholar 

  • Dickinson AJG, Croll RP, Voronezhskaya EE (2000) Development of embryonic cells containing serotonin, catecholamines, and FMRFamide-related peptides in Aplysia californica. Biol Bull 199:305–315

    Article  CAS  PubMed  Google Scholar 

  • Diefenbach TJ, Koehncke NK, Goldberg JI (1991) Characterization and development of rotational behavior in Helisoma embryos: role of endogenous serotonin. J Neurobiol 22:922–934

    Article  CAS  PubMed  Google Scholar 

  • Diefenbach TJ, Sloley BD, Goldberg JI (1995) Neurite branch development of an identified serotonergic neuron from embryonic Helisoma: evidence for autoregulation by serotonin. Dev Biol 167:282–293

    Article  CAS  PubMed  Google Scholar 

  • Diefenbach TJ, Koss R, Goldberg JI (1998) Early development of an identified serotonergic neuron in Helisoma trivolvis embryos: serotonin expression, de-expression, and uptake. J Neurobiol 34:361–376

    Article  CAS  PubMed  Google Scholar 

  • Dierick HA, Greenspan RJ (2007) Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat Genet 39:678–682

    Article  CAS  PubMed  Google Scholar 

  • Flyachinskaya LP (2000) Localization of serotonin and FMRFamide in the bivalve mollusk Mytilus edulis at early stages of its development. J Evol Biochem Physiol 36:66–70

    Article  CAS  Google Scholar 

  • Friedrich S, Wanninger A, Brueckner M, Haszprunar G (2002) Neurogenesis in the mossy chiton, Mopalia muscosa (Gould) (Polyplacophora): evidence against molluscan metamerism. J Morphol 253:109–117

    Article  PubMed  Google Scholar 

  • Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377

    Article  CAS  PubMed  Google Scholar 

  • Gillette R (2006) Evolution and function in serotonergic systems. Integr Comp Biol 46:838–846

    Article  CAS  Google Scholar 

  • Hinman VJ, O’Brien EK, Richards GS, Degnan BM (2003) Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol Dev 5:508–521

    Article  CAS  PubMed  Google Scholar 

  • Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210:308–317

    Article  PubMed  Google Scholar 

  • Johnson O, Becnel J, Nichols CD (2009) Serotonin 5-HT2 and 5-HT1A-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience 158:1292–1300

    Article  CAS  PubMed  Google Scholar 

  • Juorio AV (1971) Catecholamines and 5-hydroxytryptamine in nervous tissue of cephalopods. J Physiol Lond 216:213–226

    CAS  PubMed  Google Scholar 

  • Juorio AV, Killick SW (1972) Monoamines and their metabolism in some molluscs. Comp Gen Pharmacol 3:282–295

    Article  Google Scholar 

  • Kempf SC, Page LR, Pires A (1997) Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. J Comp Neurol 386:507–528

    Article  CAS  PubMed  Google Scholar 

  • Kime DE, Messenger JB (1990) Monoamines in the cephalopod CNS: an HPLC analysis. Comp Biochem Physiol 96C:49–57

    CAS  Google Scholar 

  • Kito-Yamashita T, Haga C, Hirai K, Uemura T, Kondo H, Kosaka K (1990) Localization of serotonin immunoreactivity in cephalopod visual system. Brain Res 521:81–88

    Article  CAS  PubMed  Google Scholar 

  • Kreiling JA, Jessen-Eller K, Miller J, Seegal RF, Reinisch CL (2001) Early development of the serotonergic and dopaminergic nervous system in Spisula solidissima (surf clam) larvae. Comp Biochem Physiol A 130:341–351

    Article  CAS  Google Scholar 

  • Lee PN, Callaerts P, de Couet HG, Martindale MQ (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature 424:1061–1065

    Article  CAS  PubMed  Google Scholar 

  • Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162

    Article  CAS  PubMed  Google Scholar 

  • Marois R, Carew TJ (1997) Ontogeny of serotonergic neurons in Aplysia californica. J Comp Neurol 386:477–490

    Article  CAS  PubMed  Google Scholar 

  • Marquis F (1989) Die Embryonalentwicklung des Nervensystems von Octopus vulgaris Lam. (Cephalopoda, Octopoda), eine histologische Analyse. Verhandl Naturf Ges Basel 99:23–76

    Google Scholar 

  • Matus AI (1973) Histochemical localization of biogenic monoamines in the cephalic ganglia of Octopus vulgaris. TissueCell 5:591–601

    Article  CAS  PubMed  Google Scholar 

  • Messenger JB (1996) Neurotransmitters of cephalopods. Invert Neurosci 2:95–114

    Article  CAS  Google Scholar 

  • Messenger JB, Tansey EM (1979) Aminergic fluorescence in the cephalopod ´cerebellum´. J Physiol Lond 287:p7–p8

    Google Scholar 

  • Navet S, Andouche A, Baratte S, Bonnaud L (2009) Shh and Pax6 have unconventional expression patterns in embryonic morphogenesis in Sepia officinalis (Cephalopoda). Gene Expr Patterns 9:461–467

    Article  CAS  PubMed  Google Scholar 

  • Newcomb JM, Fickbohm DJ, Katz PS (2006) Comparative mapping of serotonin-immunoreactive neurons in the central nervous system of nudibranch molluscs. J Comp Neurol 499:485–505

    Article  PubMed  Google Scholar 

  • Nixon M, Young JZ (2003) The brains and lives of cephalopods. Oxford University Press, Oxford

    Google Scholar 

  • Nolen TG, Carew TJ (1994) Ontogeny of serotonin-immunoreactive neurons in juvenile Aplysia californica: implications for the development of learning. Behav Neural Biol 61:282–295

    Article  CAS  PubMed  Google Scholar 

  • Page LR (2002) Apical sensory organ in larvae of the patellogastropod Tectura scutum. Biol Bull 202:6–22

    Article  PubMed  Google Scholar 

  • Page LR (2006) Early differentiating neuron in larval abalone (Haliotis kamtschatkana) reveals the relationship between ontogenetic torsion and crossing of the pleurovisceral nerve cords. Evol Dev 8:458–467

    Article  PubMed  Google Scholar 

  • Page LR, Parries SC (2000) Comparative study of the apical ganglion in planktotrophic caenogastropod larvae: ultrastructure and immunoreactivity to serotonin. J Comp Neurol 418:383–401

    Article  CAS  PubMed  Google Scholar 

  • Ram JL, Shukla UA, Ajimal GS (1981) Serotonin has both excitatory and inhibitory modulatory effects on feeding muscles in Aplysia. J Neurobiol 12:613–621

    Article  CAS  PubMed  Google Scholar 

  • Roseghini M, Ramorino LM (1970) 5-Hydroxytryptamine, histamine and n-acetylhistamine in the nervous system of Dosidicus gigas. J Neurochem 17:489–492

    Article  CAS  PubMed  Google Scholar 

  • Shigeno S, Yamamoto M (2002) Organization of the nervous system in the pygmy cuttlefish, Idiosepius paradoxus Ortmann (Idiosepiidae, Cephalopoda). J Morphol 254:65–80

    Article  PubMed  Google Scholar 

  • Shigeno S, Tsuchiya K, Segawa S (2001a) Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. J Comp Neurol 437:449–475

    Article  CAS  PubMed  Google Scholar 

  • Shigeno S, Kidokoro H, Tsuchiya K, Segawa S, Yamamoto M (2001b) Development of the brain in the oegopsid squid, Todarodes pacificus: an atlas up to the hatching stage. Zool Sci 18:527–541

    Article  Google Scholar 

  • Shigeno S, Kidokoro H, Tsuchiya K, Segawa S, Yamamoto M (2001c) Development of the brain in the oegopsid squid, Todarodes pacificus: an atlas from hatchling to juvenile. Zool Sci 18:1081–1096

    Article  Google Scholar 

  • Shigeno S, Yamamoto M (2005) Embryonic brain development of Loliginids: axonal scaffold and neuropil formation related to early life styles. Phuket Mar Biol Cent Res Bull 66:155–165

    Google Scholar 

  • Shigeno S, Sasaki T, Moritaki T, Kasugai T, Vecchione M, Agata K (2008) Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: evidence from Nautilus embryonic development. J Morphol 269:1–17

    Article  PubMed  Google Scholar 

  • Spencer GE, Klumperman J, Syed NI (1998) Neurotransmitters and neurodevelopment – Role of dopamine in neurite outgrowth, target selection and specific synapse formation. Perspec Dev Neurobi 5:451–467

    CAS  Google Scholar 

  • Strugnell J, Norman M, Jackson J, Drummond AJ, Cooper A (2005) Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Mol Phylogenet Evol 37:426–441

    Article  CAS  PubMed  Google Scholar 

  • Sun XJ, Tolbert LP, Hildebrand JG (1993) Ramification pattern and ultrastructural characteristics of the serotonin-immunoreactive neuron in the antennal lobe of the moth Manduca sexta: a laser scanning confocal and electron microscopic study. J Comp Neurol 338:5–16

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Yamamoto T, Inenaga M, Uemura H (2000) Galanin-immunoreactive neuronal system and colocalization with serotonin in the optic lobe and peduncle complex of the octopus (Octopus vulgaris). Brain Res 865:168–176

    Article  CAS  PubMed  Google Scholar 

  • Tansey EM (1979) Neurotransmitters in the cephalopod brain. Comp Biochem Physiol 64C:173–182

    CAS  Google Scholar 

  • Tansey EM (1980) Aminergic fluorescence in the cephalopod brain. Philos Trans R Soc Lond B 291:127–145

    Article  Google Scholar 

  • Tomarev SI, Callaerts P, Kos L, Zinovieva R, Halder G, Gehring W, Piatigorsky J (1997) Squid Pax-6 and eye development. Proc Natl Acad Sci USA 94:2421–2426

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Yamashita T, Haga C, Miyazaki N, Kondo H, Matsushita M (1987) Localization of serotonin-immunoreactivity in the central nervous system of Octopus vulgaris by immunohistochemistry. Brain Res 406:73–86

    Article  CAS  PubMed  Google Scholar 

  • Voronezhskaya EE, Elekes K (1993) Distribution of serotonin-like immunoreactive neurons in the embryonic nervous system of lymnaeid and planorbid snails. Neurobiology 1:371–383

    CAS  PubMed  Google Scholar 

  • Voronezhskaya EE, Tyurin SA, Nezlin LP (2002) Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J Comp Neurol 444:25–38

    Article  PubMed  Google Scholar 

  • Voronezhskaya EE, Nezlin LP, Odintsova NA, Plummer JT, Croll RP (2008) Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia). Zoomorphology 127:97–110

    Article  Google Scholar 

  • Wanninger A, Haszprunar G (2003) The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology 122:77–85

    Google Scholar 

  • Weiss KR, Kupfermann I (1976) Homology of the giant serotonergic neurons (metacerebral cells) in Aplysia and pulmonate molluscs. Brain Res 117:33–49

    Article  CAS  PubMed  Google Scholar 

  • Wells MJ (1978) Octopus – Physiology and behavior of an advanced invertebrate. Chapman and Hall, London

    Google Scholar 

  • Wollesen T, Loesel R, Wanninger A (2008) FMRFamide-like immunoreactivity in the central nervous system of the cephalopod mollusc, Idiosepius notoides. Acta Biol Hungarica 59(suppl):111–116

    Article  Google Scholar 

  • Wollesen T, Loesel R, Wanninger A (2009) Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. J Neurosci Meth 179:63–67

    Article  CAS  Google Scholar 

  • Wollesen T, Cummins SF, Degnan BM, Wanninger A (2010) FMRFamide gene and peptide expression during CNS development of the cephalopod mollusk, Idiosepius notoides. Evol Dev 12:113–130

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M (1988) Normal embryonic stages of the pygmy cuttlefish, Idiosepius pygmaeus paradoxus Ortmann. Zool Sci 5:989–998

    Google Scholar 

  • Yamamoto M, Shimazaki Y, Shigeno S (2003) Atlas of the embryonic brain in the pygmy squid, Idiosepius notoides. Zool Sci 20:163–179

    Article  PubMed  Google Scholar 

  • Young JZ (1963) The number and size of nerve cells in Octopus. Proc Zool Soc Lond 140:229–254

    Google Scholar 

  • Young JZ (1965) The buccal nervous system of Octopus. Philos Trans R Soc Lond B 249:27–44

    Article  Google Scholar 

  • Young JZ (1976) The nervous system of Loligo II. Subesophageal centres. Philos Trans R Soc Lond B 274:101–167

    Article  CAS  Google Scholar 

  • Young JZ (1977) The nervous system of Loligo III. Higher motor centres: The basal supraesophageal lobes. Philos Trans R Soc Lond B 276:351–398

    Article  Google Scholar 

  • Young JZ (1979) The nervous system of Loligo V. The vertical lobe complex. Philos Trans R Soc Lond B 285:311–354

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers whose comments helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wanninger.

Additional information

This study was supported by a PhD fellowship of the Faculty of Science of the University of Copenhagen to T.W. and Australian Research Council grants to B.M.D. Work in the laboratory of A.W. is supported by the EU-funded EST Network MOLMORPH (contract grant number MEST-CT-2005-020542).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollesen, T., Degnan, B.M. & Wanninger, A. Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, Idiosepius notoides . Cell Tissue Res 342, 161–178 (2010). https://doi.org/10.1007/s00441-010-1051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1051-z

Keywords

Navigation