Skip to main content
Log in

Oncolytic murine autonomous parvovirus, a candidate vector for glioma gene therapy, is innocuous to normal and immunocompetent mouse glial cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The sensitivity of brain tumour cells to wild-type or recombinant parvoviruses H1-PV and MVMp makes these agents promising candidates for gene therapy of astrocytoma. This application raises the question of whether parvoviruses exert deleterious or bystander effects on normal glial cells surrounding tumours. We addressed this question in the mouse model by using cell cultures derived from BALB/c, C57BL/6 and VM/Dk strains. Astrocytes and a large proportion of microglia cultures were competent for MVMp uptake. Infection was, however, abortive as replication-associated viral proteins synthesis took place in less than 10% of astrocytes and no progeny virions were produced. This restriction was even more pronounced for microglia in which no viral protein expression could be detected, save for a minute fraction of VM/Dk-derived cells. Infection with MVMp had no significant effect on glial cell survival and did not interfere with their immune potential. Indeed, neither the lipopolysaccharide (LPS)/interferon (IFN-γ)-induced cytotoxicity of VM/Dk-derived microglia towards the mouse glioma (MT539MG) cell line, nor the glial cells capacity for tumour necrosis factor α production upon LPS stimulation or LPS/IFN-γ stimulation were affected by infection with MVMp. Moreover, stimulation with LPS and/or IFN-γ resulted in a decreased expression of the viral replicative and cytotoxic protein NS1. Together, our data indicate that, in the natural host, a majority of normal glial cells are not competent for MVMp replication and that the abortive infection taking place in a minor fraction of these cells fails to impede their survival and immunocompetence, giving credit to the consideration of autonomous parvoviruses for glioma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aloisi F (2001) Immune function of microglia. Glia 36:165–179

    Article  PubMed  CAS  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7:111–118

    Article  PubMed  CAS  Google Scholar 

  • Bashir T, Horlein R, Rommelaere J, Willwand K (2000) Cyclin A activates the DNA polymerase delta-dependent elongation machinery in vitro: a parvovirus DNA replication model. Proc Natl Acad Sci USA 97:5522–5527

    Article  PubMed  CAS  Google Scholar 

  • Benveniste EN (1992) Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol 263:C1–C16

    PubMed  CAS  Google Scholar 

  • Bretz F, Genz A, Hothorn LA (2001) On the numerical availability of multiple comparison procedures. Biomed J 43:64–66

    Google Scholar 

  • Brownstein DG, Smith AL, Jacoby RO, Johnson EA, Hansen G, Tattersall P (1991) Pathogenesis of infection with a virulent allotropic variant of minute virus of mice and regulation by host genotype. Lab Invest 65:357–364

    PubMed  CAS  Google Scholar 

  • Burudi EM, Riese S, Stahl PD, Regnier-Vigouroux A (1999) Identification and functional characterization of the mannose receptor in astrocytes. Glia 25:44–55

    Article  PubMed  CAS  Google Scholar 

  • Christensen J, Cotmore SF, Tattersall P (1995) Minute virus of mice transcriptional activator protein NS1 binds directly to the transactivation region of the viral P38 promoter in a strictly ATP-dependent manner. J Virol 69:5422–5430

    PubMed  CAS  Google Scholar 

  • Chung IY, Benveniste EN (1990) Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J Immunol 144:2999–3007

    PubMed  CAS  Google Scholar 

  • Cornelis JJ, Salome N, Dinsart C, Rommelaere J (2004) Vectors based on autonomous parvoviruses: novel tools to treat cancer? J Gene Med 6 (Suppl 1):S193–S202

    Article  PubMed  CAS  Google Scholar 

  • Cotmore SF, Tattersall P (1986) The NS-1 polypeptide of the autonomous parvovirus MVM is a nuclear phosphoprotein. Virus Res 4:243–250

    Article  PubMed  CAS  Google Scholar 

  • Cotmore SF, Tattersall P (1987) The autonomously replicating parvoviruses of vertebrates. Adv Virus Res 33:91–174

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    Article  PubMed  CAS  Google Scholar 

  • Dupont F, Avalosse B, Karim A, Mine N, Bosseler M, Maron A, Van den Broeke AV, Ghanem GE, Burny A, Zeicher M (2000) Tumor-selective gene transduction and cell killing with an oncotropic autonomous parvovirus-based vector. Gene Ther 7:790–796

    Article  PubMed  CAS  Google Scholar 

  • Eichwald V, Daeffler L, Klein M, Rommelaere J, Salome N (2002) The NS2 proteins of parvovirus minute virus of mice are required for efficient nuclear egress of progeny virions in mouse cells. J Virol 76:10307–10319

    Article  PubMed  CAS  Google Scholar 

  • Fraser H (1971) Astrocytomas in an inbred mouse strain. J Pathol 103:266–270

    Article  PubMed  CAS  Google Scholar 

  • Frei K, Siepl C, Groscurth P, Bodmer S, Schwerdel C, Fontana A (1987) Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells. Eur J Immunol 17:1271–1278

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Ishii KK, Munakata Y, Saitoh T, Kaku M, Sasaki T (2002) Regulation of tumor necrosis factor alpha promoter by human parvovirus B19 NS1 through activation of AP-1 and AP-2. J Virol 76:5395–5403

    Article  PubMed  CAS  Google Scholar 

  • Fulci G, Chiocca EA (2003) Oncolytic viruses for the therapy of brain tumors and other solid malignancies: a review. Front Biosci 8:e346–e360

    Article  PubMed  CAS  Google Scholar 

  • Gresser O, Weber E, Hellwig A, Riese S, Regnier-Vigouroux A (2001) Immunocompetent astrocytes and microglia display major differences in the processing of the invariant chain and in the expression of active cathepsin L and cathepsin S. Eur J Immunol 31:1813–1824

    Article  PubMed  CAS  Google Scholar 

  • Harell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Herrero YCM, Cornelis JJ, Herold-Mende C, Rommelaere J, Schlehofer JR, Geletneky K (2004) Parvovirus H-1 infection of human glioma cells leads to complete viral replication and efficient cell killing. Int J Cancer 109:76–84

    Article  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70

    Google Scholar 

  • Linser P, Bruning H, Armentrout RW (1979) Uptake of minute virus of mice into cultured rodent cells. J Virol 31:537–545

    PubMed  CAS  Google Scholar 

  • Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    Article  PubMed  CAS  Google Scholar 

  • Margolis G, Kilham L (1975) Problems of human concern arising from animal models of intrauterine and neonatal infections due to viruses: a review. II. Pathologic studies. Prog Med Virol 20:144–179

    PubMed  CAS  Google Scholar 

  • Mucke L, Eddleston M (1993) Astrocytes in infectious and immune-mediated diseases of the central nervous system. FASEB J 7:1226–1232

    PubMed  CAS  Google Scholar 

  • Murata J, Ricciardi-Castagnoli P, Dessous L’Eglise Mange P, Martin F, Juillerat-Jeanneret L (1997) Microglial cells induce cytotoxic effects toward colon carcinoma cells: measurement of tumor cytotoxicity with a gamma-glutamyl transpeptidase assay. Int J Cancer 70:169–174

    Article  PubMed  CAS  Google Scholar 

  • Nagano N, Sasaki H, Aoyagi M, Hirakawa K (1993) Invasion of experimental rat brain tumor: early morphological changes following microinjection of C6 glioma cells. Acta Neuropathol (Berl) 86:117–125

    Article  CAS  Google Scholar 

  • Ohshima T, Iwama M, Ueno Y, Sugiyama F, Nakajima T, Fukamizu A, Yagami K (1998) Induction of apoptosis in vitro and in vivo by H-1 parvovirus infection. J Gen Virol 79:3067–3071

    PubMed  CAS  Google Scholar 

  • Previsani N, Fontana S, Hirt B, Beard P (1997) Growth of the parvovirus minute virus of mice MVMp3 in EL4 lymphocytes is restricted after cell entry and before viral DNA amplification: cell-specific differences in virus uncoating in vitro. J Virol 71:7769–7780

    PubMed  CAS  Google Scholar 

  • Ramirez JC, Fairen A, Almendral JM (1996) Parvovirus minute virus of mice strain in multiplication and pathogenesis in the newborn mouse brain are restricted to proliferative areas and to migratory cerebellar young neurons. J Virol 70:8109–8116

    PubMed  CAS  Google Scholar 

  • Roggendorf W, Strupp S, Paulus W (1996) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol (Berl) 92:288–293

    Article  CAS  Google Scholar 

  • Rommelaere J, Cornelis JJ (1991) Antineoplastic activity of parvoviruses. J Virol Methods 33:233–251

    Article  PubMed  CAS  Google Scholar 

  • Ros C, Burckhardt CJ, Kempf C (2002) Cytoplasmic trafficking of minute virus of mice: low-pH requirement, routing to late endosomes, and proteasome interaction. J Virol 76:12634–12645

    Article  PubMed  CAS  Google Scholar 

  • Rosales AA, Roque RS (1997) Microglia-derived cytotoxic factors. Part I: Inhibition of tumor cell growth in vitro. Brain Res 748:195–204

    Article  PubMed  CAS  Google Scholar 

  • Rubio MP, Guerra S, Almendral JM (2001) Genome replication and postencapsidation functions mapping to the nonstructural gene restrict the host range of a murine parvovirus in human cells. J Virol 75:11573–11582

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Kondo N, Suzumura A, Marunouchi T (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 491:394–397

    Article  PubMed  CAS  Google Scholar 

  • Serano RD, Pegram CN, Bigner DD (1980) Tumorigenic cell culture lines from a spontaneous VM/Dk murine astrocytoma (SMA). Acta Neuropathol (Berl) 51:53–64

    Article  CAS  Google Scholar 

  • Shaughnessy E, Lu D, Chatterjee S, Wong KK (1996) Parvoviral vectors for the gene therapy of cancer. Semin Oncol 23:159–171

    PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Tracey KJ, Cerami A (1993) Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol 9:317–343

    Article  PubMed  CAS  Google Scholar 

  • Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81:447–455

    Article  PubMed  CAS  Google Scholar 

  • Wiedbrauk DL, Bloom ME, Lodmell DL (1986) Mink parvoviruses and interferons: in vitro studies. J Virol 60:1179–1182

    PubMed  CAS  Google Scholar 

  • Zimmer H, Riese S, Regnier-Vigouroux A (2003) Functional characterization of mannose receptor expressed by immunocompetent mouse microglia. Glia 42:89–100

    Article  PubMed  Google Scholar 

  • Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, Samulski RJ, Muzyczka N (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 6:973–985

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the help of Carina Ittrich (DKFZ, Heidelberg, Germany) in the statistical analyses and the technical assistance of Nina Hensch and Marina Talamini. We are indebted to C. Parrish (Cornell University, Ithaca, N.Y.) and J.M. Almendral (Universidad Autonoma, Madrid, Spain) for the generous gift of the B7 hybridoma cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Régnier-Vigouroux.

Additional information

A.A. was supported by a fellowship from the Deutsches Krebsforschungszentrum (Germany), and A. R.-V. by the Centre National de la Recherche Scientifique (France).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abschuetz, A., Kehl, T., Geibig, R. et al. Oncolytic murine autonomous parvovirus, a candidate vector for glioma gene therapy, is innocuous to normal and immunocompetent mouse glial cells. Cell Tissue Res 325, 423–436 (2006). https://doi.org/10.1007/s00441-006-0199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0199-z

Keywords

Navigation