Skip to main content

Advertisement

Log in

Molecular genetics of MARVELD2 and clinical phenotype in Pakistani and Slovak families segregating DFNB49 hearing loss

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Pathogenic mutations of MARVELD2, encoding tricellulin, a tricelluar tight junction protein, cause autosomal recessive non-syndromic hearing loss (DFNB49) in families of Pakistan and Czech Roma origin. In fact, they are a significant cause of prelingual hearing loss in the Czech Roma, second only to GJB2 variants. Previously, we reported that mice homozygous for p.Arg497* variant of Marveld2 had a broad phenotypic spectrum, where defects were observed in the inner ear, heart, mandibular salivary gland, thyroid gland and olfactory epithelium. The current study describes the types and frequencies of MARVELD2 alleles and clinically reexamines members of DFNB49 families. We found that MARVELD2 variants are responsible for about 1.5 % (95 % CI 0.8–2.6) of non-syndromic hearing loss in our cohort of 800 Pakistani families. The c.1331+2T>C allele is recurrent. In addition, we identified a novel large deletion in a single family, which appears to have resulted from non-allelic homologous recombination between two similar Alu short interspersed elements. Finally, we observed no other clinical manifestations co-segregating with hearing loss in DFNB49 human families, and hypothesize that the additional abnormalities in the Marveld2 mutant mouse indicates a critical non-redundant function for tricellulin in other organ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeysinghe SS, Chuzhanova N, Krawczak M, Ball EV, Cooper DN (2003) Translocation and gross deletion breakpoints in human inherited disease and cancer I: nucleotide composition and recombination-associated motifs. Hum Mutat 22:229–244. doi:10.1002/humu.10254

    Article  CAS  PubMed  Google Scholar 

  • Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, Morell RJ, Friedman TB, Riazuddin S, Wilcox ER (2001) Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am J Hum Genet 69:25–34. doi:10.1086/321277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael Y, Camper SA, Friedman TB (2003) Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12:2049–2061

    Article  CAS  PubMed  Google Scholar 

  • Borck G, Ur Rehman A, Lee K, Pogoda HM, Kakar N, von Ameln S, Grillet N, Hildebrand MS, Ahmed ZM, Nurnberg G, Ansar M, Basit S, Javed Q, Morell RJ, Nasreen N, Shearer AE, Ahmad A, Kahrizi K, Shaikh RS, Ali RA, Khan SN, Goebel I, Meyer NC, Kimberling WJ, Webster JA, Stephan DA, Schiller MR, Bahlo M, Najmabadi H, Gillespie PG, Nurnberg P, Wollnik B, Riazuddin S, Smith RJ, Ahmad W, Muller U, Hammerschmidt M, Friedman TB, Riazuddin S, Leal SM, Ahmad J, Kubisch C (2011) Loss-of-function mutations of ILDR1 cause autosomal-recessive hearing impairment DFNB42. Am J Hum Genet 88:127–137. doi:10.1016/j.ajhg.2010.12.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chishti MS, Bhatti A, Tamim S, Lee K, McDonald ML, Leal SM, Ahmad W (2008) Splice-site mutations in the TRIC gene underlie autosomal recessive nonsyndromic hearing impairment in Pakistani families. J Hum Genet 53:101–105. doi:10.1007/s10038-007-0209-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Citi S, Sabanay H, Jakes R, Geiger B, Kendrick-Jones J (1988) Cingulin, a new peripheral component of tight junctions. Nature 333:272–276. doi:10.1038/333272a0

    Article  CAS  PubMed  Google Scholar 

  • Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, Yamauchi D, Marcus DC, Kachar B (2004) Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 24:7051–7062. doi:10.1523/JNEUROSCI.1640-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Grimberg J, Nawoschik S, Belluscio L, McKee R, Turck A, Eisenberg A (1989) A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucleic Acids Res 17:8390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gulley RL, Reese TS (1976) Intercellular junctions in the reticular lamina of the organ of Corti. J Neurocytol 5:479–507

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Tokuda S, Kitajiri S, Masuda S, Nakamura H, Oda Y, Furuse M (2013) Analysis of the ‘angulin’ proteins LSR, ILDR1 and ILDR2–tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis. J Cell Sci 126:966–977. doi:10.1242/jcs.116442

    Article  CAS  PubMed  Google Scholar 

  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945. doi:10.1083/jcb.200510043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jahnke K (1975) Intercellular junctions in the guinea pig stria vascularis as shown by freeze-etching (author’s transl). Anat Embryol (Berl) 147:189–201

    Article  CAS  Google Scholar 

  • Khasnis A, Gokula RM (2003) Romberg’s test. J Postgrad Med 49:169–172

    CAS  PubMed  Google Scholar 

  • Kitajiri S, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M, Sasaki H, Mori Y, Kubota T, Ito J, Furuse M, Tsukita S (2004a) Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 117:5087–5096. doi:10.1242/jcs.01393

    Article  CAS  PubMed  Google Scholar 

  • Kitajiri SI, Furuse M, Morita K, Saishin-Kiuchi Y, Kido H, Ito J, Tsukita S (2004b) Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear Res 187:25–34

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Ansar M, Andrade PB, Khan B, Santos-Cortez RL, Ahmad W, Leal SM (2012) Novel CLDN14 mutations in Pakistani families with autosomal recessive non-syndromic hearing loss. Am J Med Genet A 158A:315–321. doi:10.1002/ajmg.a.34407

    Article  PubMed Central  PubMed  Google Scholar 

  • Morozko EL, Nishio A, Ingham NJ, Chandra R, Fitzgerald T, Martelletti E, Borck G, Wilson E, Riordan GP, Wangemann P, Forge A, Steel KP, Liddle RA, Friedman TB, Belyantseva IA (2014) ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells. Hum Mol Genet. doi:10.1093/hmg/ddu474

    PubMed Central  PubMed  Google Scholar 

  • Nakano Y, Kim SH, Kim HM, Sanneman JD, Zhang Y, Smith RJ, Marcus DC, Wangemann P, Nessler RA, Banfi B (2009) A claudin-9-based ion permeability barrier is essential for hearing. PLoS Genet 5:e1000610. doi:10.1371/journal.pgen.1000610

    Article  PubMed Central  PubMed  Google Scholar 

  • Nayak G, Lee SI, Yousaf R, Edelmann SE, Trincot C, Van Itallie CM, Sinha GP, Rafeeq M, Jones SM, Belyantseva IA, Anderson JM, Forge A, Frolenkov GI, Riazuddin S (2013) Tricellulin deficiency affects tight junction architecture and cochlear hair cells. J Clin Invest 123:4036–4049. doi:10.1172/JCI69031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raphael Y, Altschuler RA (1991) Reorganization of cytoskeletal and junctional proteins during cochlear hair cell degeneration. Cell Motil Cytoskeleton 18:215–227. doi:10.1002/cm.970180307

    Article  CAS  PubMed  Google Scholar 

  • Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, Khan SN, Chattaraj P, Friedman PL, Anderson JM, Belyantseva IA, Forge A, Riazuddin S, Friedman TB (2006) Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet 79:1040–1051. doi:10.1086/510022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Safka Brozkova D, Lastuvkova J, Stepankova H, Krutova M, Trkova M, Myska P, Seeman P (2012) DFNB49 is an important cause of non-syndromic deafness in Czech Roma patients but not in the general Czech population. Clin Genet 82:579–582. doi:10.1111/j.1399-0004.2011.01817.x

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228. doi:10.1152/ajpcell.00558.2003

    Article  CAS  PubMed  Google Scholar 

  • Steed E, Balda MS, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20:142–149. doi:10.1016/j.tcb.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293. doi:10.1038/35067088

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Yamazaki Y, Katsuno T, Tamura A, Tsukita S (2008) Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 27:6930–6938. doi:10.1038/onc.2008.344

    Article  CAS  PubMed  Google Scholar 

  • Westphal JK, Dorfel MJ, Krug SM, Cording JD, Piontek J, Blasig IE, Tauber R, Fromm M, Huber O (2010) Tricellulin forms homomeric and heteromeric tight junctional complexes. Cell Mol Life Sci 67:2057–2068. doi:10.1007/s00018-010-0313-y

    Article  CAS  PubMed  Google Scholar 

  • Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyantseva I, Ben-Yosef T, Liburd NA, Morell RJ, Kachar B, Wu DK, Griffith AJ, Riazuddin S, Friedman TB (2001) Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104:165–172

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Wei X, Chai Y, Li L, Wu H (2013) Genetic etiology study of the non-syndromic deafness in Chinese Hans by targeted next-generation sequencing. Orphanet J Rare Dis 8:85

    Article  PubMed Central  PubMed  Google Scholar 

  • Yap AS, Mullin JM, Stevenson BR (1998) Molecular analyses of tight junction physiology: insights and paradoxes. J Membr Biol 163:159–167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the families for their participation and cooperation. We thank Dr. Jozef Jenca for his kind assistance and Dr. Vasil Janko for discussing the ECG and Echo finding. We also thank Drs. R. Elodie, and R. Yousaf for critique of the manuscript. This work was also supported by the Higher Education Commission and Ministry of Science and Technology, Islamabad, Pakistan, to Sh.R.; the International Center for Genetic Engineering and Biotechnology, Trieste, Italy under project CRP/PAK08-01 Contract No. 08/009 to Sh.R.; National Institute on Deafness and Other Communication Disorders (NIDCD/NIH) research grants R01 DC012564 to Z.M.A.; R01 DC011803 and R01 DC011748 to S.R.; intramural funds from NIDCD DC000039-17 to T.B.F.; Slovak Research and Development Agency under the Contract No. APVV 0148-10 to the Slovak study group and by project implementation (ITMS 26240220051) supported by OPRaD funded by ERDF to D.G.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Riazuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, G., Varga, L., Trincot, C. et al. Molecular genetics of MARVELD2 and clinical phenotype in Pakistani and Slovak families segregating DFNB49 hearing loss. Hum Genet 134, 423–437 (2015). https://doi.org/10.1007/s00439-015-1532-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-015-1532-y

Keywords

Navigation