Skip to main content
Log in

Mosquito larvicidal and pupicidal efficacy of Solanum xanthocarpum (Family: Solanaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against Culex quinquefasciatus Say (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The bio-efficacy of Solanum xanthocarpum leaf extract and bacterial insecticide, Bacillus thuringiensis, were assessed against the first to fourth instar larvae and pupae of Culex quinquefasciatus, under the laboratory conditions. The medicinal plants were collected from the outskirt Bharathiar University, Coimbatore, Tamil Nadu, India. The shade dried plant materials were extracted by employing the Soxhlet apparatus with ethanol (organic solvent) for 8 h and filtered. The extracts were concentrated at reduced temperature on a rotary evaporator and stored at a temperature of 4°C. Both S. xanthocarpum and B. thuringiensis show varied degree of larvicidal and pupicidal activity against various stages of C. quinquefasciatus. The LC50 and LC90 of S. xanthocarpum against the first to fourth instar larvae and pupae were 155.29, 198.32, 271.12, 377.44, and 448.41 ppm and 687.14, 913.10, 1,011.89, 1,058.85, and 1,141.65 ppm, respectively. On the other hand, the LC50 values of B. thuringiensis against the first to fourth instar larvae and pupae were 133.88, 157.14, 179.44, 206.80, and 240.74 ppm; the LC90 values were 321.04, 346.89, 388.86, 430.95, and 492.70 ppm, respectively. However, the combined treatment of S. xanthocarpum + B. thuringiensis (1:2) material shows highest larvicidal and pupicidal activity of the LC50 values 126.81, 137.62, 169.14, 238.27, and 316.02 ppm and the LC90 values 476.36, 613.49, 705.29, 887.85, and 1,041.73 ppm against C. quinquefasciatus in all the tested concentrations than the individuals and clearly established that there is a substantial amount of synergist act. Therefore, the present investigation clearly exhibit that both S. xanthocarpum and B. thuringiensis materials could serve as a potential of highest mortality rate against the mosquito larvae laboratory as well as the field conditions. Since C. quinquefasciatus is a ditch breeder vector mosquito, this is a user and eco-friendly biopesticide for the control of mosquito vector management program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of insecticides. J Econ Entomol 18:267–269

    Google Scholar 

  • Abdel-Hameed A, Carlberg G, El Tayer OM (1980) Studies world. J Microbiol Biotechnol 6:299–304

    Google Scholar 

  • Alder HL, Rossler EB (1977) Introduction to probability and statistics. Freeman, San Francisco, p 246

    Google Scholar 

  • Ali A (1981) Bacillus thuringiensis serovar. israelensis (ABG-6108) against Chironomids and some non target aquatic invertebrates. J Invertebr Pathol 38:264–272

    Article  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Armengol G, Hernandez J, Velez JG, Orduz S (2006) Long-lasting effects of a Bacillus thuringiensis serovar israelensis experimental tablet formulation for Aedes aegypti (Diptera: Culicidae) control. J Econ Entomol 99:1590–1595

    Article  PubMed  Google Scholar 

  • Arthan D, Svasti J, Kittakoop P, Pittayakhachonwut D, Tanticharoen M, Thebtaranonth Y (2002) Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum. Phytochemistry 59:459–463

    Article  PubMed  CAS  Google Scholar 

  • Balaraman K, Balasubramanian M, Jambulingam P (1983) Field trial of Bacillus thuringiensis H-14 (VCRC B-17) against Culex and Anopheles larvae. Indian J Med Res 77:38–43

    PubMed  CAS  Google Scholar 

  • Balaraman K, Gunasekaran K, Pillai PK, Manonmani AM (1987) Field trial with different formulations of Bacillus sphaericus for mosquito control. Indian J Med Res 85:620–625

    PubMed  CAS  Google Scholar 

  • Bansal SK, Singh KV, Kumar S (2009) Larvicidal activity of the extracts from different parts of the plant Solanum xanthocarpum against important mosquito vectors in the arid region. J Environ Biol 30:221–226

    PubMed  CAS  Google Scholar 

  • Bernhard L, Bernhard P, Magnusson P (2003) Management of patients with lymphoedema caused by filariasis in North-eastern Tanzania: alternative approaches. Physiotherapy 89:743–749

    Article  Google Scholar 

  • Bills PA (2001) New database of pesticide resistant insects and mites (Arthropods). Pestic Notes 14:2–4

    Google Scholar 

  • Caraballo AJ (2000) Mosquito repellent action of Neemos. J Am Mosq Control Assoc 16:45–6

    PubMed  CAS  Google Scholar 

  • Cetin H, Erler F, Yanikoglu A (2004) Larvicidal activity of a botanical natural product, AkseBio2, against Culex pipiens. Fitoterapia 75:724–728

    Article  PubMed  CAS  Google Scholar 

  • Chansang U, Zahiri NS, Bansiddhi J, Boonruad T, Thongsrirak P, Mingmuang J, Benjapong N, Mulla MS (2005) Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum Vahl) from Thailand. J Vector Ecol 30(2):195–200

    PubMed  Google Scholar 

  • Charles JF, de Barjac H (1983) Action des cristaux de Bacillus thuringiensis var. israelensis Su intestin moyen des larves de Aedes aegypti L. en microscopic electronique. Ann Microbiol Inst Pasteur 134:197–218

    Article  Google Scholar 

  • Chowdhury N, Bhattacharjee I, Laskar S, Chandra G (2007) Efficacy of Solanum villosum Mill. (Solanaceae: Solanales) as a biocontrol agent against fourth instar larvae of Culex quinquefasciatus Say. Turk J Zool 31:365–370

    Google Scholar 

  • Coletto da Silva A, Kinupp V, Absy M, Kerr W (2004) Pollen morphology and study of the visitors (Hymenoptera, Apidae) of Solanum stramoniifolium Jacq. (Solanaceae) in Central Amazon. Acta Bot Bras 18:653–657

    Article  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    PubMed  CAS  Google Scholar 

  • Crickmore N, Bone EJ, Williams JA, Ellar DJ (1995) Contribution of the individual components of the d-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol Lett 131:249–254

    CAS  Google Scholar 

  • Daniel T, Umarani S, Sakthivadivel M (1995) Insecticidal action of Ervatamia divaricata L. and Acalypha indica L. against Culex quinquefasciatus Say. Geobias 14:95–98

    Google Scholar 

  • De Barjac H (1978) Une nouvelle variete de Bacillus thuringiensis tres toxique pour les moustiques. B. thuringiensis var. israelensis serotype 14. CR Acad Sci (Paris) 286:797–800

    Google Scholar 

  • Dua VK, Pandey AC, Alam ME, Dash AP (2006) Larvicidal activity of Hibiscus abelmoschus Linn. (Malvaceae) against mosquitoes. J Am Mosq Control Assoc 22(1):155–157

    Article  PubMed  Google Scholar 

  • Dua VK, Pandey AC, Raghavendra K, Gupta A, Sharma T, Dash AP (2009) Larvicidal activity of neem oil (Azadirachta indica formulation against mosquitoes). Malar J 8:124

    Article  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–78

    Google Scholar 

  • Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety and plant physiology. Crit Rev Plant Sci 16:55–132

    CAS  Google Scholar 

  • Garcia R, Desrochers BD (1979) Toxicity of Bacillus thuringiensis var. israelensis to some California mosquitoes under different conditions. Mosq News 39:541–544

    Google Scholar 

  • Geetha I, Manonmani AM (2010) Surfactin: a novel mosquitocidal biosurfactant produced by Bacillus subtilis sp. subtilis (VCRC B471) and influence of abiotic factors on its pupicidal efficacy. Let appl microbiol 51(4):406–412

    Article  CAS  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008) Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102(2):289–292

    Article  PubMed  CAS  Google Scholar 

  • Gupta MP, Dutt S (1938) Chemical examination of the seeds of Solanum xanthocarpum Schard & Wendel. Part II. The constituents. J Indian Chem Soc 15:95–100

    CAS  Google Scholar 

  • Höfte H, Whitely H (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  Google Scholar 

  • Hostettmann K, Potterat O (1997) Strategy for the isolation and analysis of antifungal, molluscicidal, and larvicidal agents from tropical plants. In: Phy tochemicals for pest control (Eds. P.A. Hedin, R.M. Hollingworth, E.P. Masler, J. Miyamoto and D.G. Thompson). ACS Symp. Ser. No. 658, Am. Chem. Soc., Washington D.C., USA. p 14 26

  • Indian Council of Medical Research (ICMR) Bulletin (2003) Prospects of using herbal products in the control of mosquito vectors 33(1): 1-10

  • James AA (1992) Mosquito molecular genetics: the hands that feed bite back. Science 257:37–8

    Article  PubMed  CAS  Google Scholar 

  • Kalyanasundaram M, Das PK (1985) Larvicidal and synergistic activity of plant extracts for mosquito control. Indian J Med Res 82:19–21

    PubMed  CAS  Google Scholar 

  • Kovendan K, Murugan K (2011) Effect of medicinal plants on the mosquito vectors from the different agro-climatic regions of Tamil Nadu, India. Adv Environ Biol 5(2):335–344

    Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Kamalakannan S (2011a) Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say. (Diptera: Culicidae). Parasitol Res 109:1251–1257

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2011b) Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2469-2

  • Kovendan K, Murugan K, Vincent S (2011c) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2525-y

  • Kovendan K, Murugan K, Naresh Kumar A, Vincent S, Hwang JS (2011d) Bio-efficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2540-z

  • Kovendan K, Murugan K, Panneerselvam C, Mahesh Kumar P, Amerasan D, Subramaniam J, Vincent S, Barnard DR (2011e) Laboratory and field evaluation of medicinal plant extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2736-2

  • Kuppusamy C, Ayyadurai N (2011) Synergistic activity of Cyt1A from Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus B101 H5a5b against Bacillus sphaericus B101 H5a5b-resistant strains of Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2502-5

  • Liu SQ, Shi Cao JJ, Jia H, Liu FB, XQ, Shi GL (2000) Survey of pesticidal component in plant. In Entomology in China in 21st Century, Proceedings of 2000 Conference of Chinese Entomological Society ed . Science & Technique Press. 1098–1104

  • Liu H, Xu Q, Zhang L, Liu N (2005) Chlorpyrifos resistance in mosquito Culex quinquefasciatus. J Med Entomol 42(5):815–820

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Luo J, Huang X, Kong L (2009) Four new steroidal glycosides from Solanum torvum and their cytotoxic activities. Steroids 74:95–101

    Article  PubMed  CAS  Google Scholar 

  • Maheswaran R, Sathis S, Ignacimuthu S (2008) Larvicidal activity of Leucus aspera (Willd.) against the larvae of Culex quinquefasciatus Say. and Aedes aegypti. Int J Biol 2(3):214–217

    Google Scholar 

  • Medeiros FP, Santos MA, Regis L, Rios EM, Rolim Neto PJ (2005) Development of a Bacillus sphaericus tablet formulation and its evaluation as a larvicide in the biological control of Culex quinquefasciatus. Mem Inst Oswaldo Cruz 100:431–434

    Article  PubMed  Google Scholar 

  • Mohan L, Sharma P, Srivastava CN (2005) Evaluation of Solanum xanthocarpum extracts as mosquito larvicides. J Environ Biol 26:399–401

    PubMed  Google Scholar 

  • Mohan L, Sharma P, Srivastava CN (2006) Evaluation of Solanum xanthocarpum extracts as a synergist for cypermethrin against the filarial vector, Celux quinquefasciatus (Say). Entomol Res 36:220–5

    Article  Google Scholar 

  • Mohan L, Sharma P, Srivastava CN (2008) Bioefficacy of chloropyrephos and temephos against anopheline and culicine larvae. J Entomol Res 32:147–50

    CAS  Google Scholar 

  • Moretti MD, Sanna-Passino G, Demontis S, Bazzoni E (2002) Essential oil formulations useful as a new tool for insect pest control. AAPS Pharm Sci Tech 3:E13

    Article  Google Scholar 

  • Murugan K, Thangamathi P, Jeyabalan D (2002) Interactive effect of botanical and Bacillus thuringiensis subsp. israelensis on Culex quinquefasciatus Say. J Sci Ind Res 61:1068–1076

    Google Scholar 

  • Mustafa MA, Al Khazaraji A (2008) Effect of some plant extracts on the Culex pipiens molestus Forskal larvae. Iraqi J Vet Sci 22:9–12

    Google Scholar 

  • Nakamura T, Komori A, Lee Y, Hashimoto F, Yahara S, Nohara T, Ejima A (1996) Cytotoxic activities of Solanum steroidal glycosides. Biol Pharm Bull 19:554–566

    Article  Google Scholar 

  • National Institute of Communicable Diseases (NICD) (1990) Proceedings of the National Seminar on operation research on vector control in filariasis. New Delhi

  • Porter AG (1996) Mosquitocidal toxins, genes and bacteria: the hit squad. Parasitol Today 12:175–179

    Article  PubMed  CAS  Google Scholar 

  • Priest FG (1992) Biological control of mosquitoes and other biting flies by Bacillus sphaericus and Bacillus thuringiensis. J Appl Microbiol 72:357–369

    Article  CAS  Google Scholar 

  • Rahuman AA, Venktesan P (2008) Larvicidal efficacy of five cucurbitacious plant leaf extracts against mosquito species. Parasitol Res 103:133–139

    Article  PubMed  Google Scholar 

  • Rao DR, Reuben R, Nagasampagi BA (1995) Development of combined use of neem (Azadirachta indica) and water management for the control of culicine mosquitoes in rice fields. Med Vet Entomol 9:25–33

    Article  PubMed  CAS  Google Scholar 

  • Roddick J, Weissenberg M, Leonard A (2001) Membrane disruption and enzyme inhibition by naturally-occurring and modified chacotriose-containing Solanum steroidal glycoalkaloids. Phytochemistry 56:603–610

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Latham JR (1953) The isolation of diosgenin from Solanum xanthocarpum. J Am Chem Soc 75:6067

    Article  CAS  Google Scholar 

  • Seyoum A, Palsson K, Kung’a S (2002) Traditional use of mosquito repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: ethnobotanical studies and application by thermal expulsion and direct burning. Trans R Soc Trop Med Hyg 96:225–31

    Article  PubMed  CAS  Google Scholar 

  • Singh CP, Singh KN, Pandey MC (1996) Insect growth regulatory effect of neem derivative “Neemolin” on Spilosoma obligue Walker. Pestology 5:11–13

    Google Scholar 

  • Silva T, Camara C, Agra F, de Carvalho M, Frana M, Brandoline S, da Silva L, Braz-Filho R (2006) Molluscicidal activity of Solanum species of the northeast of Brazil on Biomphalaria glabrata. Fitoterapia 77:449–452

    Article  PubMed  Google Scholar 

  • Singh Karam V, Bansal SK (2003) Larvicidal potential of a perennial herb Solanum xanthocarpum against vectors of malaria and dengue/DHF. Curr Sci 84:749–751

    Google Scholar 

  • Singh O, Subharani K, Singh N, Devi N, Nevidita L (2007) Isolation of steroidal glycosides from Solanum xanthocarpum and studies on their antifungal activities. Nat Prod Res 21:585–590

    Article  PubMed  CAS  Google Scholar 

  • Sumroiphon S, Yuwaree C, Arunlertaree C, Komalamisra N, Rongsriyam Y (2006) Bioactivity of citrus seed for mosquito-borne diseases larval control. Southeast Asian J Trop Med Public Health 37(3):123–127

    PubMed  Google Scholar 

  • Terranella A, Eigiege A, Gontor I, Dagwa P, Damishi S, Miri E, Blackburn B, McFarland D, Zingeser J, Jinadu MY, Richards FO (2006) Urban lymphatic filariasis in central Nigeria. Ann Trop Med Parasitol 100(2):163–172

    Article  PubMed  CAS  Google Scholar 

  • Thiery I, Back C, Barbazzan P, Sinegre G (1996) Applications de Bacillus thuringiensis et de B. sphaericus dans la demoustication et la., lutte contreles veccteurs de maladies tropicales. Ann Inst Pasteur Actual 7:47–260

    Google Scholar 

  • Tupkari SV, Saoji AN, Deshmukh VK (1972) Phytochemical study of Solanum xanthocarpum. Planta Med 22(6):184–187

    Article  PubMed  CAS  Google Scholar 

  • Vogel (1978) Textbook of practical organic chemistry. The English 804 Language Book Society and Longman, London, p 1368

  • WHO (1992) Lymphatic filariasis: the disease and its control. 5th report. Who Expert Committee on Filariasis. Technical Report Series. p 821

  • Wink M (1993) Production and application of phytochemicals from an agricultural perspective. In: Van Beek TA, Breteler H (eds) Phytochemistry and agriculture. Clarendon Press, Oxford, UK, pp 171–213

    Google Scholar 

Download references

Acknowledgments

We thank Dr. K. Sasikala, Professor and Head, Department of Zoology, Bharathiar University for the laboratory facilities provided. The authors are grateful to Mr. N. Muthukrishnan, Technician and Mr. A. Anbarasan, Lab Assistant, National Centre for Diseases Control (NCDC), Mettupalayam, Tamil Nadu for their help in mosquito collection and mosquito samples provided for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalimuthu Kovendan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahesh Kumar, P., Murugan, K., Kovendan, K. et al. Mosquito larvicidal and pupicidal efficacy of Solanum xanthocarpum (Family: Solanaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 110, 2541–2550 (2012). https://doi.org/10.1007/s00436-011-2797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2797-2

Keywords

Navigation