Skip to main content
Log in

Analysis of P-glycoprotein expression in purified parasite plasma membrane and food vacuole from Plasmodium falciparum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

A P-glycoprotein homologue (Pgh1) is believed to play a role in modulating levels of chloroquine resistance in Plasmodium falciparum. To study the role of Pgh1 in the mechanism of chloroquine (CQ) resistance, antisera were raised against this protein. There was no direct association between the level of Pgh1 expression and chloroquine sensitivity. We also failed to detect phosphorylation of Pgh1 in the food vacuole (FV), suggesting that other mechanisms regulate the chloroquine-resistant (CQR) phenotype. Therefore, high levels of expression of Pgh1 or phosphorylation of this protein in the FV could not account for CQ sensitivity. In addition, the lack of inhibition of CQ accumulation by anti-Pgh1 antibodies suggests that Pgh1 is not involved as a CQ transporter in the plasma membrane of P. falciparum. Furthermore, resistance reversers do not appear to act at the plasma membrane level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnes DA, Foote SJ, Galatis D, Kemp DJ, Cowman AF (1992) Selection for high-level chloroquine results in deamplification of the pfmdr1 gene and increased sensitivity to mefloquine in Plasmodium falciparum. EMBO J 11:3067–3075

    PubMed  CAS  Google Scholar 

  • Biggs BA, Kemp DJ, Brown GV (1989) Subtelomeric chromosome deletions in field isolates of Plasmodium falciparum and their relationship to loss of cytoadherence in vitro. Proc Natl Acad Sci U S A 86:2428–2432

    Article  PubMed  CAS  Google Scholar 

  • Cowman AF, Karcz S, Galatis D, Culvenor JG (1991) A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole. J Cell Biol 113:1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Cowman AF, Galatis D, Thompson JK (1994) Selection for mefloquine-resistance is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci U S A 91:1143–1147

    Article  PubMed  CAS  Google Scholar 

  • Ekong RM, Robson KJ, Baker DA, Warhurst DC (1993) Transcripts of the multidrug resistance genes in chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. Parasitology 106:107–115

    Article  PubMed  CAS  Google Scholar 

  • Elandalloussi LM, Smith PJ (2002) Preparation of pure and intact Plasmodium falciparum plasma membrane vesicles and partial characterisation of the plasma membrane ATPase. Malaria J 1:6

    Article  Google Scholar 

  • Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig SM, Ursos LM, Sidhu AB, Naude B, Deitsh KW, Su XZ, Wootton JC, Roepe PD, Wellems TE (2000) Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6:861–871

    Article  PubMed  CAS  Google Scholar 

  • Foote SJ, Thompson JK, Cowman AF, Kemp DJ (1989) Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 57:921–930

    Article  PubMed  CAS  Google Scholar 

  • Freese JA, Markus MB, Golenser J (1991) In vitro sensitivity of Southern African reference isolates of Plasmodium falciparum to chloroquine and pyrimethamine. Bull World Health Organ 69:707–712

    PubMed  CAS  Google Scholar 

  • Georges E, Sharom FJ, Ling V (1990) Multidrug resistance and chemosensitization: therapeutic implications for cancer chemotherapy. Adv Pharmacol 21:185–213

    Article  PubMed  CAS  Google Scholar 

  • German UA, Chambers TC, Ambudkar SV, Pastan I, Gottesman MM (1995) Effects of phosphorylation of P-glycoprotein on multidrug resistance. J Bioenerg Biomembranes 27:53–61

    Article  Google Scholar 

  • Hayashi M, Yamada H, Mitamura T, Horii T, Yamamoto A, Moriyama Y (2000) Vacuolar H+-ATPase localized in plasma membranes of malaria parasite cells, plasmodium falciparum, is involved in regional acidification of parasitized erythrocytes. J Biol Chem 275:34353–34358

    Article  PubMed  CAS  Google Scholar 

  • Karcz S, Hermann VR, Trottein F, Cowman AF (1994) Cloning and characterisation of the vacuolar ATPase B subunits from Plasmodium falciparum. Mol Biochem Parasitol 65:123–133

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lelong-Rebel IH, Rebel G, Cardarelli CO, Pastan, I, Gottesman MM (2003) Modulation by the ATP/GTP ratio of the phosphorylation level of P-glycoprotein and of various plasma membrane proteins of KB-V1 multidrug resistant cells. Anticancer Res 23:2363–2375

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Gibbins BL, Hinrichs DJ (1993) Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg 48:739–746

    PubMed  CAS  Google Scholar 

  • Martin SK, Oduola AM, Milhous WK (1987) Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science 235:899–901

    PubMed  CAS  Google Scholar 

  • Mechetner EB, Roninson IB (1992) Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody. Proc Natl Acad Sci U S A 89:5824–5828

    Article  PubMed  CAS  Google Scholar 

  • Mungthin M, Bray PG, Ward SA (1999) Phenotypic and genotypic characteristics of recently adapted isolates of Plasmodium falciparum from Thailand. Am J Trop Med Hyg 60:469–474

    PubMed  CAS  Google Scholar 

  • Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L, Patel R, Laing K, Looareesuwan S, White NJ, Nosten F, Krishna S (2004) Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364:438–447

    Article  PubMed  CAS  Google Scholar 

  • Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF (2000) Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403:906–909

    Article  PubMed  CAS  Google Scholar 

  • Saliba KJ, Folb PI, Smith PJ (1998) Role for the plasmodium falciparum digestive vacuole in chloroquine resistance. Biochem Pharmacol 56:313–320

    Article  PubMed  CAS  Google Scholar 

  • Sidhu AB, Verdier-Pinard D, Fidock DA (2002) Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298:74–75

    Article  PubMed  CAS  Google Scholar 

  • Sidhu AB, Gaw Valderramos S, Fidock DA (2005) pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol 57:913–926

    Article  PubMed  CAS  Google Scholar 

  • Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    Article  PubMed  CAS  Google Scholar 

  • Thaithong S, Beale GH (1981) Resistance of ten isolates of Plasmodium falciparum to chloroquine and pyrimethamine by in vitro tests. Trans Roy Soc Trop Med Hyg 75:271–273

    Article  PubMed  CAS  Google Scholar 

  • Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675

    PubMed  CAS  Google Scholar 

  • Van Es HHG, Renkema H, Aerts H, Shurr E (1994) Expression of the plasmodial pfmdr1 gene in mammalian cells is associated with increased susceptibility to chloroquine. Mol Cell Biol 14:2419–2428

    PubMed  Google Scholar 

  • Van Schalkwyk DA, Walden JC, Smith PJ (2001) Reversal of chloroquine resistance in Plasmodium falciparum using combinations of chemosensitizers. Antimicrob Agents Chemother 45:3171–3174

    Article  PubMed  Google Scholar 

  • Walliker D, Quakyi IA, Wellems TE, McCutchan TF, Szarfman A, London WT, Corcoran LM, Burkot TR, Carter R (1987) Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236:1661–1666

    PubMed  CAS  Google Scholar 

  • Wellems TE, Panton LJ, Gluzman IY, Rosario VE, Gwadz RW, Walker-Jonah A, Krogstad DJ (1990) Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345:253–255

    Article  PubMed  CAS  Google Scholar 

  • Wilson CM, Serrano AE, Wasley A, Bogenschutz MP, Shankar AH, Wirth DH (1989) Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science 244:1184–1186

    PubMed  CAS  Google Scholar 

  • World Health Organisation (WHO) (1997) The world health report 1997. Conquering, suffering, enriching humanity. World Health Organisation Publication, Geneva

    Google Scholar 

Download references

Acknowledgement

This work was supported by the South African Medical Research Council. The experiments described comply with the current laws of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence M. Elandaloussi.

Additional information

L. M. E. and M. L. contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elandaloussi, L.M., Lindt, M., Collins, M. et al. Analysis of P-glycoprotein expression in purified parasite plasma membrane and food vacuole from Plasmodium falciparum . Parasitol Res 99, 631–637 (2006). https://doi.org/10.1007/s00436-006-0209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-006-0209-9

Keywords

Navigation