Skip to main content

Advertisement

Log in

Screening investigations in small-for-gestational-age near-term and term infants

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The aims of this study are to examine how frequently near-term and term small-for-gestational-age (SGA) infants were investigated in our clinical practice, whether being born less than the third centile for weight increased the yield of positive investigations, and whether there were additional characteristics in infants with positive investigations. This retrospective cohort study was compiled using a database of a large maternity network, using the search near term and term gestational age (greater than or equal to 35 weeks) over a span of 4 years. SGA babies were further filtered into less than the tenth centile and third centile. Out of a population of 30,461 infants in the study period, 3437 (11.3%) SGA infants were identified. Four hundred fifteen SGA infants (12.1%) underwent screening investigations, of which 49 infants (11.8%) yielded a positive investigation. 27.2% of karyotypes, 12.8% of cranial ultrasounds and 0.4% of urine CMV tests showed positive results in < 10th centile group. Being born less than the third centile for weight did not increase the yield of positive investigations. Most infants with positive investigations had an additional maternal or neonatal characteristic or risk factor present.

Conclusion: SGA babies without additional maternal or neonatal characteristics have a poor yield on neonatal screening investigations. Additional characteristics may be considered while deciding whether a SGA infant needs screening investigation.

What is Known:

Small-for-gestational-age (SGA) infants have an increased risk of short- and long-term complications.

Whilst the causes for SGA are multifactorial, there has been a tendency to undertake screening investigations like Toxoplasma, Others, Rubella, Cytomegalovirus, Herpes group of viruses (TORCH) screening and cranial ultrasounds in the neonatal period.

What is New:

Comprehensive study investigating the rates of screening in near-term and term SGA population.

The yield of screening tests for near-term and term SGA infants without additional antenatal and postnatal characteristics is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AGA:

Appropriate for gestational age

BMI:

Body mass index

BOS:

Birthing outcome summary

CMV:

Cytomegalovirus

CTG:

Cardiotocography

HIE:

Hypoxic ischaemic encephalopathy

HSV:

Herpes simplex virus

IUGR:

Intrauterine growth restriction

IVH:

Intraventricular haemorrhage

NICU:

Neonatal intensive care unit

PCR:

Polymerase chain reaction

SCN:

Special care nursery

SGA:

Small for gestational age

TORCH:

Toxoplasma, others, rubella, cytomegalovirus, herpes virus

USG:

Ultrasonograph

References

  1. Battaglia FC (1970) Intrauterine growth retardation. Am J Obstet Gynecol 106:1103–1114

    Article  CAS  PubMed  Google Scholar 

  2. Battaglia F, Lubchenco L (1967) A practical classification of newborn infants by weight and gestational age. J Paediatr 71:159–163

    Article  CAS  Google Scholar 

  3. Black RE (2015) Global prevalence of small for gestational age births. Nestle Nutr Inst Workshop Ser 81:1–7

    PubMed  Google Scholar 

  4. Chow SSW, Le Marsney R, Hossain S, Haslam R, Lui K (2013) Report of the Australian and New Zealand Neonatal Network, Sydney ANZNN 2015

  5. Dobbins TA, Sullivan EA, Roberts CL, Simpson JM (2012) Australian national birthweight percentiles by sex and gestational age, 1998-2007. Med J Aust 197(5):291–294

    Article  PubMed  Google Scholar 

  6. Ewing AC, Ellington SR, Shapiro-Mendoza CK, Barfield WD, Kourtis AP (2017) Full-term small-for-gestational-age newborns in the U.S.: characteristics, trends, and morbidity. Matern Child Health J 21:786–796

    Article  PubMed  Google Scholar 

  7. Figueras F, Cruz-Martinez R, Sanz-Cortes M, Arranz A, Illa M, Botet F, Costas-Moragas C, Gratacos E (2011) Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound Obstet Gynecol 38:288–294

    Article  CAS  PubMed  Google Scholar 

  8. Fowler KB, Boppana SB (2006) Congenital cytomegalovirus (CMV) infection and hearing deficit. J Clin Virol 35:226–231

    Article  PubMed  Google Scholar 

  9. Guellec I, Lapillonne A, Renolleau S, Charlaluk ML, Roze JC, Marret S, Vieux R, Monique K, Ancelet PY (2011) Neurologic outcomes at school age in very preterm infants born with severe or mild growth restriction. Paediatrics 127(4):e883–e891

    Article  Google Scholar 

  10. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20

    Article  CAS  PubMed  Google Scholar 

  11. Henriksen T (2008) The macrosomic fetus: a challenge in current obstetrics. Acta Obstet Gynecol Scand 87:134–145

    Article  PubMed  Google Scholar 

  12. Khan NA, Kazzi SN (2000) Yield and costs of screening growth-retarded infants for torch infections. Am J Perinatol 17(3):131–135

    Article  CAS  PubMed  Google Scholar 

  13. Kok JH, den Ouden AL, Verloove-Vanhorick SP, Brand R (1998) Outcome of very preterm small for gestational age infants: the first nine years of life. Br J Obstet Gynaecol 105(2):162–168

    Article  CAS  PubMed  Google Scholar 

  14. Lee A, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, Adair L, Baqui AH, Bhutta ZA, Caulfield LE et al (2013) National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Health 1(1):e26–e36

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mendez-Figueroa H, Truong VT, Pedroza C, Chauhan SP (2017) Morbidity and mortality in small-for-gestational-age infants: a secondary analysis of nine MFMU network studies. Am J Perinatol 34:323–332

    PubMed  Google Scholar 

  16. Robson SC, Martin WL, Morris RK (2013) The investigation and management of the small-for-gestational-age fetus. United Kingdom: Guidelines Committee of the Royal College of Obstetricians and Gynaecologists Report No 31:34

  17. Roza SJ, Steegers EA, Verburg BO, Jaddoe VW, Moll HA, Hofman A, Verhulst FC, Tiemeier H (2008) What is spared by fetal brain-sparing? Fetal circulatory redistribution and behavioral problems in the general population. Am J Epidemiol 168:1145–1152

    Article  PubMed  Google Scholar 

  18. Simonazzi G, Curti A, Murano P, Cervi F, Contoli M, Lazzarotto T, Capretti MG, Rizzo N, Guerra B (2014) Congenital cytomegalovirus infection and small for gestational age infants. Prenat Diagn 34(8):765–769

    Article  PubMed  Google Scholar 

  19. Sims ME, Troy C, Walther FJ (1992) Are small for gestational age infants at higher risk for intracranial lesions? Am J Perinatol 9(3):152–153

    Article  CAS  PubMed  Google Scholar 

  20. Van den Broek AJ, Kok JH, Houtzager BA, Scherjon SA (2010) Behavioural problems at the age of eleven years in preterm-born children with or without fetal brain sparing: a prospective cohort study. Early Hum Dev 86:379–384

    Article  PubMed  Google Scholar 

  21. Van der Weiden S, de Jong EP, Te Pas AB, Middeldorp JM, Vossen AC, Rijken M, Walther FJ, Lopriore E (2011) Is routine TORCH screening and urine CMV culture warranted in small for gestational age neonates? Early Hum Dev 87(2):103–107

    Article  PubMed  Google Scholar 

  22. Wei D, Sardesai SR, Barton L (2014) The C in TORCH: a cost-effective alternative to screening small-for-gestational-age infants. Neonatology 106(1):24–29

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amanda Kendel, Monash Women’s Information Team Support Officer, for her help in retrieving data from the Birthing Outcome Summary (BOS) database.

Author information

Authors and Affiliations

Authors

Contributions

MBK collected data, carried out the analyses of the collected data, drafted the initial manuscript, critically reviewed the manuscript and approved the final manuscript as submitted.

AP collected data, provided constructive comments to the manuscript. She approved the final manuscript as submitted.

AM formulated the research question, critically reviewed the manuscript and approved the final manuscript as submitted.

Corresponding author

Correspondence to Atul Malhotra.

Ethics declarations

All procedures performed were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration or comparable ethical standards. The study qualified as a quality assurance project under the hospital human research ethics committee framework.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Patrick Van Reempts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, M.B., Popiel, A. & Malhotra, A. Screening investigations in small-for-gestational-age near-term and term infants. Eur J Pediatr 176, 1707–1712 (2017). https://doi.org/10.1007/s00431-017-3031-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-017-3031-8

Keywords

Navigation