Skip to main content

Advertisement

Log in

Long-term impairment of social behavior, vocalizations and motor activity induced by bilateral lesions of the fastigial nucleus in juvenile rats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The cerebellum is increasingly recognized to be involved in limbic and cognitive-associative functioning. Cerebellar cognitive affective syndromes may result from various types of injuries. Cerebellar mutism may occur in children after resection of midline tumors in the posterior fossa, which has been thought to be related to damage to the cerebellar vermis. Here, we investigated whether bilateral lesions of the fastigial nucleus, which is located within the upper vermis, would affect social behavior in a rat model. Juvenile male Sprague–Dawley rats, aged 23 days, underwent bilateral thermocoagulation of the fastigial nucleus via stereotaxically implanted electrodes under general anesthesia. Electrodes were inserted without application of electric current in a sham-lesion group and naïve rats served as additional controls. All groups underwent standardized examination before surgery and on specific time points up to 49 days after surgery to investigate locomotor activity, motor coordination, social behavior, and ultrasound vocalizations during social interaction. Finally, lesions were verified histologically. Playing behavior and vocalizations were reduced up to 4 weeks after surgery in rats of the lesion group compared to rats with sham-lesions and controls. After surgery in rats of the lesion group, locomotor activity was disturbed for 3 days as compared to sham-lesion rats, but for 4 weeks as compared to controls. Motor coordination measured by the rotarod and balance beam test was compromised until adulthood. Bilateral lesions of the fastigial nucleus in juvenile rats cause a severe and long-lasting reduction of social interaction and motor coordination in juvenile rats, which has some similarities to cerebellar cognitive affective syndromes in the human context. This indicates a modulating role of the fastigial nucleus with regard to neural circuitries relevant for social behavior, such as the limbic system and the prefrontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abla AA, Lawton MT (2014) Cerebellomedullary fissure dissection and tonsillar mobilization: a gateway to lesions around the medulla. World Neurosurg 82:e591–e592

    Article  PubMed  Google Scholar 

  • Al-Afif S, Staden M, Krauss JK et al (2013) Splitting of the cerebellar vermis in juvenile rats—effects on social behavior, vocalization and motor activity. Behav Brain Res 250:293–298

    Article  CAS  PubMed  Google Scholar 

  • Anand BK, Malhotra CL, Singh B, Dua S (1959) Cerebellar projections to limbic system. J Neurophysiol 22:451–457

    Article  CAS  PubMed  Google Scholar 

  • Angaut P, Bowsher D (1970) Ascending projections of the medial cerebellar (fastigial) nucleus: an experimental study in the cat. Brain Res 24:49–68

    Article  CAS  PubMed  Google Scholar 

  • Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16:645–649

    Article  CAS  PubMed  Google Scholar 

  • Batton RR, Jayaraman A, Ruggiero D, Carpenter MB (1977) Fastigial efferent projections in the monkey: an autoradiographic study. J Comp Neurol 174:281–305

    Article  PubMed  Google Scholar 

  • Brunelli SA, Nie R, Whipple C et al (2006) The effects of selective breeding for infant ultrasonic vocalizations on play behavior in juvenile rats. Physiol Behav 87:527–536

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MB (1959) Lesions of the fastigial nuclei in the rhesus monkey. Am J Anat 104:1–33

    Article  CAS  PubMed  Google Scholar 

  • Carta I, Chen CH, Schott AL et al (2019) Cerebellar modulation of the reward circuitry and social behavior. Science (80–) 363:eaav0581

    Article  CAS  Google Scholar 

  • Catsman-Berrevoets CE, Van Dongen HR, Mulder PG et al (1999) Tumour type and size are high risk factors for the syndrome of “cerebellar” mutism and subsequent dysarthria. J Neurol Neurosurg Psychiatry 67:755–757

    Article  CAS  Google Scholar 

  • Chambers WW, Sprague JM (1955) Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. J Comp Neurol 103:105–129

    Article  CAS  PubMed  Google Scholar 

  • Coffman KA, Dum RP, Strick PL (2011) Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci USA 108:16068–16073. https://doi.org/10.1073/pnas.1107904108

    Article  PubMed  Google Scholar 

  • Dailey AT, McKhann GM, Berger MS (1995) The pathophysiology of oral pharyngeal apraxia and mutism following posterior fossa tumor resection in children. J Neurosurg 83:467–475

    Article  CAS  Google Scholar 

  • Diedrichsen J, Maderwald S, Küper M et al (2011) Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage 54:1786–1794. https://doi.org/10.1016/j.neuroimage.2010.10.035

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova A, Weber J, Redies C et al (2002) MRI atlas of the human cerebellar nuclei. Neuroimage 17:240–255

    Article  CAS  PubMed  Google Scholar 

  • El-Bahy K (2005) Telovelar approach to the fourth ventricle: operative findings and results in 16 cases. Acta Neurochir (Wien) 147:137–142 (discussion 142)

    Article  CAS  Google Scholar 

  • Gelabert-González M, Fernández-Villa J (2001) Mutism after posterior fossa surgery. Review of the literature. Clin Neurol Neurosurg 103:111–114

    Article  Google Scholar 

  • Gould BB, Graybiel AM (1976) Afferents to the cerebellar cortex in the cat: evidence for an intrinsic pathway leading from the deep nuclei to the cortex. Brain Res 110:601–611

    Article  CAS  PubMed  Google Scholar 

  • Haroian AJ, Massopust LC, Young PA (1981) Cerebellothalamic projections in the rat: an autoradiographic and degeneration study. J Comp Neurol 197:217–236

    Article  CAS  PubMed  Google Scholar 

  • Harper JW, Heath RG (1972) Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Exp Neurol 39:285–292

    Article  Google Scholar 

  • Hermann EJ, Rittierodt M, Krauss JK (2008) Combined transventricular and supracerebellar infratentorial approach preserving the vermis in giant pediatric posterior fossa midline tumors. Neurosurgery 63:ONS30–ONS35 (discussion ONS35-7)

    PubMed  Google Scholar 

  • Ilg W, Giese MA, Gizewski ER et al (2008) The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 131:2913–2927. https://doi.org/10.1093/brain/awn246

    Article  CAS  PubMed  Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  • Jansen J, Jansen J (1955) On the efferent fibers of the cerebellar nuclei in the cat. J Comp Neurol 102:607–632

    Article  CAS  PubMed  Google Scholar 

  • Kossorotoff M, Gonin-Flambois C, Gitiaux C et al (2010) A cognitive and affective pattern in posterior fossa strokes in children: a case series. Dev Med Child Neurol 52:626–631

    Article  PubMed  Google Scholar 

  • Ku KM, Weir RK, Silverman JL et al (2016) Behavioral phenotyping of Juvenile Long–Evans and Sprague–Dawley rats: implications for preclinical models of autism spectrum disorders. PLoS One 11:e0158150. https://doi.org/10.1371/journal.pone.0158150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meaney MJ, Stewart J (1981) A descriptive study of social development in the rat (Rattus norvegicus). Anim Behav 29:34–45. https://doi.org/10.1016/S0003-3472(81)80149-2

    Article  Google Scholar 

  • Mussi ACM, Rhoton AL (2000) Telovelar approach to the fourth ventricle: microsurgical anatomy. J Neurosurg 92:812–823. https://doi.org/10.3171/jns.2000.92.5.0812

    Article  CAS  PubMed  Google Scholar 

  • Niesink RJ, van Ree JM (1982) Short-term isolation increases social interactions of male rats: a parametric analysis. Physiol Behav 29:819–825

    Article  CAS  PubMed  Google Scholar 

  • Noda H, Sugita S, Ikeda Y (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 302:330–348

    Article  CAS  PubMed  Google Scholar 

  • Ozimek A, Richter S, Hein-Kropp C et al (2004) Cerebellar mutism—report of four cases. J Neurol 251:963–972

    Article  CAS  PubMed  Google Scholar 

  • Panksepp J (1981) The ontogeny of play in rats. Dev Psychobiol 14:327–332

    Article  CAS  PubMed  Google Scholar 

  • Panksepp J, Burgdorf J (2000) 50-kHz chirping in response to conditioned and unconditioned tickle-induced reward in rats: effects of social housing and genetic variables. Behav Brain Res 115:25–38

    Article  CAS  PubMed  Google Scholar 

  • Panksepp J, Siviy S, Normansell L (1984) The psychobiology of play: theoretical and methodological perspectives. Neurosci Biobehav Rev 8:465–492

    Article  CAS  PubMed  Google Scholar 

  • Parker KL, Narayanan NS, Andreasen NC (2014) The therapeutic potential of the cerebellum in schizophrenia. Front Syst Neurosci 8:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Peloquin P, Vannemreddy PSSV, Watkins LM, Byrne RW (2012) Intracranial cotton ball gossypiboma mimicking recurrent meningioma: report of a case with literature review for intentional and unintentional foreign body granulomas. Clin Neurol Neurosurg 114:1039–1041

    Article  PubMed  Google Scholar 

  • Pitsika M, Tsitouras V (2013) Cerebellar mutism. J Neurosurg Pediatr 12:604–614

    Article  Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    Article  CAS  Google Scholar 

  • Rasmussen AT (1933) Origin and course of the fasciculus uncinatus (Russell) in the cat, with observation on other fiber tracts arising from cerebellar nuclei. J Comp Neurol 57:165–197

    Article  Google Scholar 

  • Reis DJ, Doba N, Nathan MA (1973) Predatory attack, grooming, and consummatory behaviors evoked by electrical stimulation of cat cerebellar nuclei. Science 182:845–847

    Article  CAS  Google Scholar 

  • Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain 123(Pt 5):1051–1061

    Article  Google Scholar 

  • Robertson PL, Muraszko KM, Holmes EJ et al (2006) Incidence and severity of postoperative cerebellar mutism syndrome in children with medulloblastoma: a prospective study by the Children’s Oncology Group. J Neurosurg 105:444–451

    Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(Pt 4):561–579

    Article  PubMed  Google Scholar 

  • Schneider M, Koch M (2005) Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: effects of chronic pubertal cannabinoid treatment. Neuropsychopharmacology 30:944–957

    Article  CAS  PubMed  Google Scholar 

  • Schutter DJLG, van Honk J (2005) The cerebellum on the rise in human emotion. Cerebellum 4:290–294

    Article  PubMed  Google Scholar 

  • Snider RS, Maiti A (1976) Cerebellar contributions to the Papez circuit. J Neurosci Res 2:133–146

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (1995) Two channels in the cerebellothalamocortical system. J Comp Neurol 354:57–70

    Article  CAS  PubMed  Google Scholar 

  • Stoodley CJ, Valera EM, Schmahmann JD (2010) An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol 23:65–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoodley CJ, D’Mello AM, Ellegood J et al (2017) Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci 20:1744–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strata P (2015) The emotional cerebellum. Cerebellum 14(570–7):d0649–d0659

    Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434. https://doi.org/10.1146/annurev.neuro.31.060407.125606

    Article  CAS  Google Scholar 

  • Tavano A, Grasso R, Gagliardi C et al (2007) Disorders of cognitive and affective development in cerebellar malformations. Brain 130:2646–2660

    Article  PubMed  Google Scholar 

  • Thach WT, Bastian AJ (2004) Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res 143:353–366

    Article  PubMed  Google Scholar 

  • Tomasello F, Conti A, Cardali S et al (2015) Telovelar approach to fourth ventricle tumors: highlights and limitations. World Neurosurg 83:1141–1147

    Article  Google Scholar 

  • Van Calenbergh F, Van de Laar A, Plets C et al (1995) Transient cerebellar mutism after posterior fossa surgery in children. Neurosurgery 37:894–898

    Article  Google Scholar 

  • Wankhar W, Rathinasamy S (2015) Unilateral lesion of fastigal nucleus in Wistar Albino rats and its effect on motor coordination—a preliminary study. J Behav Heal 4:122

    Article  Google Scholar 

  • Watson TC, Jones MW, Apps R (2009) Electrophysiological mapping of novel prefrontal—cerebellar pathways. Front Integr Neurosci 3:18. https://doi.org/10.3389/neuro.07.018.2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson TC, Becker N, Apps R, Jones MW (2014) Back to front: cerebellar connections and interactions with the prefrontal cortex. Front Syst Neurosci 8:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Wöhr M, Schwarting RKW (2012) Testing social acoustic memory in rats: effects of stimulus configuration and long-term memory on the induction of social approach behavior by appetitive 50-kHz ultrasonic vocalizations. Neurobiol Learn Mem 98:154–164

    Article  PubMed  Google Scholar 

  • Wöhr M, Schwarting RKW (2013) Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell Tissue Res 354(81–97):7–9

    Google Scholar 

  • Zaheer SN, Wood M (2010) Experiences with the telovelar approach to fourth ventricular tumors in children. Pediatr Neurosurg 46:340–343

    Article  Google Scholar 

  • Zhang X-Y, Wang J-J, Zhu J-N (2016) Cerebellar fastigial nucleus: from anatomic construction to physiological functions. Cereb Atax 3:9. https://doi.org/10.1186/s40673-016-0047-1

    Article  Google Scholar 

  • Zhang L, Zhao M, Sui R-B (2017) Cerebellar fastigial nucleus electrical stimulation alleviates depressive-like behaviors in post-stroke depression rat model and potential mechanisms. Cell Physiol Biochem 41:1403–1412

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Al-Afif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Afif, S., Krauss, J.K., Helms, F. et al. Long-term impairment of social behavior, vocalizations and motor activity induced by bilateral lesions of the fastigial nucleus in juvenile rats. Brain Struct Funct 224, 1739–1751 (2019). https://doi.org/10.1007/s00429-019-01871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01871-3

Keywords

Navigation