Skip to main content
Log in

Distinct and simultaneously active plasticity mechanisms in mouse hippocampus during different phases of Morris water maze training

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Although the Morris water maze (MWM) is the most frequently used protocol to examine hippocampus-dependent learning in mice, not much is known about the spatio-temporal dynamics of underlying plasticity processes. Here, we studied molecular and cellular hippocampal plasticity mechanisms during early and late phases of spatial learning in the MWM. Quantitative in situ hybridization for the immediate early genes zif268 and Homer1a (H1a) revealed phase-dependent differences in their expression between areas CA1 and CA3. During the initial learning phase, CA1 expression levels of the molecular plasticity marker H1a, but not of the activity reporter gene zif268, were related to task proficiency; whereas no learning-specific changes could be detected in CA3. Simultaneously, the ratio of surface-expressed NMDAR subunits NR2A and NR2B was downregulated as measured by acute slice biotinylation assay, while the total number of surface NMDARs was unaltered. When intrinsic ‘somatic’ and synaptic plasticity in the CA1-region of hippocampal slices were examined, we found that early learning promotes intrinsic neuronal plasticity as manifested by a reduction of spike frequency adaptation and postburst afterhyperpolarization. At the synaptic level, however, maintenance of long-term potentiation (LTP) in all learning groups was impaired which is most likely due to ‘intrinsic’ learning-induced LTP which occluded any further electrically induced LTP. Late learning, in contrast, was characterized by re-normalized H1a, NR2A and NR2B expression and neuronal firing, yet a further strengthening of learning-induced LTP. Together, our data support a precisely timed cascade of complex molecular and subcellular transformations occurring from early to late MWM learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham WC (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9:387

    CAS  PubMed  Google Scholar 

  • Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19:126–130

    CAS  PubMed  Google Scholar 

  • Abraham WC, Dragunow M, Tate WP (1991) The role of immediate early genes in the stabilization of long-term potentiation. Mol Neurobiol 5:297–314

    CAS  PubMed  Google Scholar 

  • Ahmed T, Sabanov V, D’Hooge R, Balschun D (2011) An N-methyl-d-aspartate-receptor dependent, late-phase long-term depression in middle-aged mice identifies no GluN2-subunit bias. Neuroscience 185:27–38

    CAS  PubMed  Google Scholar 

  • Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Balschun D, Wolfer DP, Gass P, Mantamadiotis T, Welzl H, Schutz G, Frey JU, Lipp HP (2003) Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J Neurosci 23:6304–6314

    CAS  PubMed  Google Scholar 

  • Bannerman DM, Good MA, Butcher SP, Ramsay M, Morris RG (1995) Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378:182–186

    CAS  PubMed  Google Scholar 

  • Bannerman DM, Niewoehner B, Lyon L, Romberg C, Schmitt WB, Taylor A, Sanderson DJ, Cottam J, Sprengel R, Seeburg PH, Kohr G, Rawlins JN (2008) NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory but not incremental spatial reference memory. J Neurosci 28:3623–3630

    CAS  PubMed  Google Scholar 

  • Bannerman DM, Bus T, Taylor A, Sanderson DJ, Schwarz I, Jensen V, Hvalby O, Rawlins JN, Seeburg PH, Sprengel R (2012) Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nat Neurosci 15:1153–1159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bayer KU, De KP, Leonard AS, Hell JW, Schulman H (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411:801–805

    CAS  PubMed  Google Scholar 

  • Benfenati F (2007) Synaptic plasticity and the neurobiology of learning and memory. Acta Biomed 78(Suppl 1):58–66

    PubMed  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48

    CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    CAS  PubMed  Google Scholar 

  • Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386:284–288

    CAS  PubMed  Google Scholar 

  • Brennan PA, Schellinck HM, Keverne EB (1999) Patterns of expression of the immediate-early gene egr-1 in the accessory olfactory bulb of female mice exposed to pheromonal constituents of male urine. Neuroscience 90:1463–1470

    CAS  PubMed  Google Scholar 

  • Brigman JL, Wright T, Talani G, Prasad-Mulcare S, Jinde S, Seabold GK, Mathur P, Davis MI, Bock R, Gustin RM, Colbran RJ, Alvarez VA, Nakazawa K, Delpire E, Lovinger DM, Holmes A (2010) Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci 30:4590–4600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cantarero G, Lloyd A, Celnik P (2013) Reversal of long-term potentiation-like plasticity processes after motor learning disrupts skill retention. J Neurosci 33:12862–12869

    PubMed Central  CAS  PubMed  Google Scholar 

  • Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41

    PubMed  Google Scholar 

  • Clayton DA, Mesches MH, Alvarez E, Bickford PC, Browning MD (2002) A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat. J Neurosci 22:3628–3637

    CAS  PubMed  Google Scholar 

  • Cohen-Matsliah SI, Brosh I, Rosenblum K, Barkai E (2007) A novel role for extracellular signal-regulated kinase in maintaining long-term memory-relevant excitability changes. J Neurosci 27:12584–12589

    CAS  PubMed  Google Scholar 

  • Cohen-Matsliah SI, Seroussi Y, Rosenblum K, Barkai E (2008) Persistent ERK activation maintains learning-induced long-lasting modulation of synaptic connectivity. Learn Mem 15:756–761

    PubMed  Google Scholar 

  • Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340:474–476

    CAS  PubMed  Google Scholar 

  • Daoudal G, Debanne D (2003) Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem 10:456–465

    PubMed  Google Scholar 

  • Denayer E, Ahmed T, Brems H, Van Woerden G, Borgesius NZ, Callaerts-Vegh Z, Yoshimura A, Hartmann D, Elgersma Y, D’Hooge R, Legius E, Balschun D (2008) Spred1 is required for synaptic plasticity and hippocampus-dependent learning. J Neurosci 28:14443–14449

    CAS  PubMed  Google Scholar 

  • Dragunow M (1996) A role for immediate-early transcription factors in learning and memory. Behav Genet 26:293–299

    CAS  PubMed  Google Scholar 

  • Duncan RS, Hwang SY, Koulen P (2005) Effects of Vesl/Homer proteins on intracellular signaling. Exp Biol Med (Maywood) 230:527–535

    CAS  Google Scholar 

  • Efron B, Tibshirani R (1994) An introduction to the bootstrap. Chapman & Hall, New York

    Google Scholar 

  • Engelhardt PE, Nigg JT, Carr LA, Ferreira F (2008) Cognitive inhibition and working memory in attention-deficit/hyperactivity disorder. J Abnorm Psychol 117:591–605

    PubMed  Google Scholar 

  • Foster KA, McLaughlin N, Edbauer D, Phillips M, Bolton A, Constantine-Paton M, Sheng M (2010) Distinct roles of NR2A and NR2B cytoplasmic tails in long-term potentiation. J Neurosci 30:2676–2685

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frank LM, Stanley GB, Brown EN (2004) Hippocampal plasticity across multiple days of exposure to novel environments. J Neurosci 24:7681–7689

    CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates. Elsevier Science, San Diego

    Google Scholar 

  • Frick A, Magee J, Johnston D (2004) LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci 7:126–135

    CAS  PubMed  Google Scholar 

  • Garthe A, Behr J, Kempermann G (2009) Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE 4:e5464

    PubMed Central  PubMed  Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20:3993–4001

    CAS  PubMed  Google Scholar 

  • Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21:5089–5098

    CAS  PubMed  Google Scholar 

  • Habib D, Tsui CK, Rosen LG, Dringenberg HC (2013) Occlusion of low-frequency-induced, heterosynaptic long-term potentiation in the rat hippocampus in vivo following spatial training. Cereb Cortex. doi:10.1093/cercor/bht174

    PubMed  Google Scholar 

  • Hernandez PJ, Schiltz CA, Kelley AE (2006) Dynamic shifts in corticostriatal expression patterns of the immediate early genes Homer 1a and Zif268 during early and late phases of instrumental training. Learn Mem 13:599–608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hill AJ (1978) First occurrence of hippocampal spatial firing in a new environment. Exp Neurol 62:282–297

    CAS  PubMed  Google Scholar 

  • Holman D, Henley JM (2007) A novel method for monitoring the cell surface expression of heteromeric protein complexes in dispersed neurons and acute hippocampal slices. J Neurosci Methods 160:302–308

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu TT, Laeremans A, Eysel UT, Cnops L, Arckens L (2009) Analysis of c-fos and zif268 expression reveals time-dependent changes in activity inside and outside the lesion projection zone in adult cat area 17 after retinal lesions. Cereb Cortex 19:2982–2992

    PubMed  Google Scholar 

  • Hu TT, Van den Bergh G, Thorrez L, Heylen K, Eysel UT, Arckens L (2011) Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone. Cereb Cortex 21:2883–2892

    PubMed  Google Scholar 

  • Inoue Y, Honkura N, Kato A, Ogawa S, Udo H, Inokuchi K, Sugiyama H (2004) Activity-inducible protein Homer1a/Vesl-1S promotes redistribution of postsynaptic protein Homer1c/Vesl-1L in cultured rat hippocampal neurons. Neurosci Lett 354:143–147

    CAS  PubMed  Google Scholar 

  • Inoue Y, Udo H, Inokuchi K, Sugiyama H (2007) Homer1a regulates the activity-induced remodeling of synaptic structures in cultured hippocampal neurons. Neuroscience 150:841–852

    CAS  PubMed  Google Scholar 

  • Isaac JT, Buchanan KA, Muller RU, Mellor JR (2009) Hippocampal place cell firing patterns can induce long-term synaptic plasticity in vitro. J Neurosci 29:6840–6850

    PubMed Central  CAS  PubMed  Google Scholar 

  • Izumi Y, Auberson YP, Zorumski CF (2006) Zinc modulates bidirectional hippocampal plasticity by effects on NMDA receptors. J Neurosci 26:7181–7188

    CAS  PubMed  Google Scholar 

  • Jung SC, Hoffman DA (2009) Biphasic somatic A-type K channel downregulation mediates intrinsic plasticity in hippocampal CA1 pyramidal neurons. PLoS ONE 4:e6549

    PubMed Central  PubMed  Google Scholar 

  • Kato A, Ozawa F, Saitoh Y, Hirai K, Inokuchi K (1997) vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett 412:183–189

    CAS  PubMed  Google Scholar 

  • Knapska E, Kaczmarek L (2004) A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 74:183–211

    CAS  PubMed  Google Scholar 

  • Kopp C, Longordo F, Luthi A (2007) Experience-dependent changes in NMDA receptor composition at mature central synapses. Neuropharmacology 53:1–9

    CAS  PubMed  Google Scholar 

  • Kubik S, Miyashita T, Guzowski JF (2007) Using immediate-early genes to map hippocampal subregional functions. Learn Mem 14:758–770

    PubMed  Google Scholar 

  • Laeremans A, Nys J, Luyten W, D’Hooge R, Paulussen M, Arckens L (2013) AMIGO2 mRNA expression in hippocampal CA2 and CA3a. Brain Struct Funct 218:123–130

    CAS  PubMed  Google Scholar 

  • Laroche S (1994) Long term potentiation of the synaptic efficacy: mechanisms, functional properties and role in learning and memory. C R Seances Soc Biol Fil 188:415–458

    CAS  PubMed  Google Scholar 

  • Lebel D, Sidhu N, Barkai E, Quinlan EM (2006) Learning in the absence of experience-dependent regulation of NMDAR composition. Learn Mem 13:566–570

    CAS  PubMed  Google Scholar 

  • Lei Z, Deng P, Li Y, Xu ZC (2010) Downregulation of Kv4.2 channels mediated by NR2B-containing NMDA receptors in cultured hippocampal neurons. Neuroscience 165:350–362

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021–1024

    CAS  PubMed  Google Scholar 

  • Mahon S, Charpier S (2012) Bidirectional plasticity of intrinsic excitability controls sensory inputs efficiency in layer 5 barrel cortex neurons in vivo. J Neurosci 32:11377–11389

    CAS  PubMed  Google Scholar 

  • Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126

    CAS  PubMed  Google Scholar 

  • Martinez JL Jr, Derrick BE (1996) Long-term potentiation and learning. Annu Rev Psychol 47:173–203

    PubMed  Google Scholar 

  • Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, Collingridge GL, Bashir ZI (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24:7821–7828

    CAS  PubMed  Google Scholar 

  • Matthews EA, Weible AP, Shah S, Disterhoft JF (2008) The BK-mediated fAHP is modulated by learning a hippocampus-dependent task. Proc Natl Acad Sci USA 105:15154–15159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matynia A, Kushner SA, Silva AJ (2002) Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memory. Annu Rev Genet 36:687–720

    CAS  PubMed  Google Scholar 

  • Miller S, Mayford M (1999) Cellular and molecular mechanisms of memory: the LTP connection. Curr Opin Genet Dev 9:333–337

    CAS  PubMed  Google Scholar 

  • Morishita W, Lu W, Smith GB, Nicoll RA, Bear MF, Malenka RC (2007) Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology 52:71–76

    CAS  PubMed  Google Scholar 

  • Morris RGM (1981) Spatial localisation does not require the presence of local cues. Learn Motiv 12:239–260

    Google Scholar 

  • Morris RGM, Garrud P, Rawlins JNP, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    CAS  PubMed  Google Scholar 

  • Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319:774–776

    CAS  PubMed  Google Scholar 

  • Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci 31:69–89

    CAS  PubMed  Google Scholar 

  • Moyer JR Jr, Thompson LT, Disterhoft JF (1996) Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. J Neurosci 16:5536–5546

    CAS  PubMed  Google Scholar 

  • Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297:211–218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S (2004) NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci 5:361–372

    CAS  PubMed  Google Scholar 

  • Oh MM, Kuo AG, Wu WW, Sametsky EA, Disterhoft JF (2003) Watermaze learning enhances excitability of CA1 pyramidal neurons. J Neurophysiol 90:2171–2179

    PubMed  Google Scholar 

  • Oh MM, McKay BM, Power JM, Disterhoft JF (2009) Learning-related postburst afterhyperpolarization reduction in CA1 pyramidal neurons is mediated by protein kinase A. Proc Natl Acad Sci USA 106:1620–1625

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oh MM, Oliveira FA, Disterhoft JF (2010) Learning and aging related changes in intrinsic neuronal excitability. Front Aging Neurosci 2:2

    PubMed Central  PubMed  Google Scholar 

  • Quinlan EM, Olstein DH, Bear MF (1999) Bidirectional, experience-dependent regulation of N-methyl-d-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc Natl Acad Sci USA 96:12876–12880

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quinlan EM, Lebel D, Brosh I, Barkai E (2004) A molecular mechanism for stabilization of learning-induced synaptic modifications. Neuron 41:185–192

    CAS  PubMed  Google Scholar 

  • Rapp PR, Rosenberg RA, Gallagher M (1987) An evaluation of spatial information processing in aged rats. Behav Neurosci 101:3–12

    CAS  PubMed  Google Scholar 

  • Renaudineau S, Poucet B, Laroche S, Davis S, Save E (2009) Impaired long-term stability of CA1 place cell representation in mice lacking the transcription factor zif268/egr1. Proc Natl Acad Sci USA 106:11771–11775

    PubMed Central  CAS  PubMed  Google Scholar 

  • Richter-Levin G, Thomas KL, Hunt SP, Bliss TV (1998) Dissociation between genes activated in long-term potentiation and in spatial learning in the rat. Neurosci Lett 251:41–44

    CAS  PubMed  Google Scholar 

  • Rioult-Pedotti MS, Friedman D, Donoghue JP (2000) Learning-induced LTP in neocortex. Science 290:533–536

    CAS  PubMed  Google Scholar 

  • Robertson HA (1992) Immediate-early genes, neuronal plasticity, and memory. Biochem Cell Biol 70:729–737

    CAS  PubMed  Google Scholar 

  • Rodriguez-Duran LF, Castillo DV, Moguel-Gonzalez M, Escobar ML (2011) Conditioned taste aversion modifies persistently the subsequent induction of neocortical long-term potentiation in vivo. Neurobiol Learn Mem 95:519–526

    PubMed  Google Scholar 

  • Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373:151–155

    CAS  PubMed  Google Scholar 

  • Sala C, Piech V, Wilson NR, Passafaro M, Liu G, Sheng M (2001) Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31:115–130

    CAS  PubMed  Google Scholar 

  • Sala C, Futai K, Yamamoto K, Worley PF, Hayashi Y, Sheng M (2003) Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. J Neurosci 23:6327–6337

    CAS  PubMed  Google Scholar 

  • Shapiro ML, Eichenbaum H (1999) Hippocampus as a memory map: synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus 9:365–384

    CAS  PubMed  Google Scholar 

  • Shi M, Wu X, Wei C, Yang M, Liu Z, Ren W (2011) Effects of NR2A and NR2B-containing N-methyl-d-aspartate receptors on neuronal-firing properties. NeuroReport 22:762–766

    CAS  PubMed  Google Scholar 

  • Shires KL, Aggleton JP (2008) Mapping immediate-early gene activity in the rat after place learning in a water-maze: the importance of matched control conditions. Eur J Neurosci 28:982–996

    CAS  PubMed  Google Scholar 

  • Sobczyk A, Scheuss V, Svoboda K (2005) NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines. J Neurosci 25:6037–6046

    CAS  PubMed  Google Scholar 

  • Strack S, Colbran RJ (1998) Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-d-aspartate receptor. J Biol Chem 273:20689–20692

    CAS  PubMed  Google Scholar 

  • Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14:311–317

    CAS  PubMed  Google Scholar 

  • Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69

    CAS  PubMed  Google Scholar 

  • Tanila H, Sipila P, Shapiro M, Eichenbaum H (1997) Brain aging: impaired coding of novel environmental cues. J Neurosci 17:5167–5174

    CAS  PubMed  Google Scholar 

  • Thomas U (2002) Modulation of synaptic signalling complexes by Homer proteins. J Neurochem 81:407–413

    CAS  PubMed  Google Scholar 

  • Thompson LT, Best PJ (1990) Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res 509:299–308

    CAS  PubMed  Google Scholar 

  • Tischmeyer W, Grimm R (1999) Activation of immediate early genes and memory formation. Cell Mol Life Sci 55:564–574

    CAS  PubMed  Google Scholar 

  • Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87:1327–1338

    CAS  PubMed  Google Scholar 

  • Tzingounis AV, Nicoll RA (2006) Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52:403–407

    CAS  PubMed  Google Scholar 

  • Van Brussel L, Gerits A, Arckens L (2011) Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. Cereb Cortex 21:2133–2146

    PubMed  Google Scholar 

  • Vazdarjanova A, McNaughton BL, Barnes CA, Worley PF, Guzowski JF (2002) Experience-dependent coincident expression of the effector immediate-early genes arc and Homer 1a in hippocampal and neocortical neuronal networks. J Neurosci 22:10067–10071

    CAS  PubMed  Google Scholar 

  • Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB, Grayson DR (1998) Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. J Neurophysiol 79:555–566

    CAS  PubMed  Google Scholar 

  • Walton M, Henderson C, Mason-Parker S, Lawlor P, Abraham WC, Bilkey D, Dragunow M (1999) Immediate early gene transcription and synaptic modulation. J Neurosci Res 58:96–106

    CAS  PubMed  Google Scholar 

  • White NM, McDonals RJ (2002) Multiple parallel memory systems in the brain of the rat. Neurobiol Learn Mem 77:125–184

    PubMed  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    CAS  PubMed  Google Scholar 

  • Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261:1055–1058

    CAS  PubMed  Google Scholar 

  • Wolfer DP, Madani R, Valenti P, Lipp HP (2001) Extended analysis of path data from mutant mice using the public domain software Wintrack. Physiol Behav 73:745–753

    CAS  PubMed  Google Scholar 

  • Woolley DG, Laeremans A, Gantois I, Mantini D, Vermaercke B, Op de Beeck HP, Swinnen SP, Wenderoth N, Arckens L, D’Hooge R (2013) Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proc Natl Acad Sci USA 110:3131–3136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao B, Tu JC, Worley PF (2000) Homer: a link between neural activity and glutamate receptor function. Curr Opin Neurobiol 10:370–374

    CAS  PubMed  Google Scholar 

  • Xu J, Kang N, Jiang L, Nedergaard M, Kang J (2005) Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. J Neurosci 25:1750–1760

    CAS  PubMed  Google Scholar 

  • Yano M, Steiner H (2005a) Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neuroscience 132:855–865

    CAS  PubMed  Google Scholar 

  • Yano M, Steiner H (2005b) Topography of methylphenidate (ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides. Neuropsychopharmacology 30:901–915

    CAS  PubMed  Google Scholar 

  • Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55:1081–1094

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yashiro K, Corlew R, Philpot BD (2005) Visual deprivation modifies both presynaptic glutamate release and the composition of perisynaptic/extrasynaptic NMDA receptors in adult visual cortex. J Neurosci 25:11684–11692

    CAS  PubMed  Google Scholar 

  • Zelcer I, Cohen H, Richter-Levin G, Lebiosn T, Grossberger T, Barkai E (2006) A cellular correlate of learning-induced metaplasticity in the hippocampus. Cereb Cortex 16:460–468

    PubMed  Google Scholar 

  • Zhang W, Linden DJ (2003) The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4:885–900

    CAS  PubMed  Google Scholar 

  • Zhu L, Scelfo B, Hartell NA, Strata P, Sacchetti B (2007) The effects of fear conditioning on cerebellar LTP and LTD. Eur J Neurosci 26:219–227

    PubMed  Google Scholar 

  • Ziemann U, Ilic TV, Pauli C, Meintzschel F, Ruge D (2004) Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 24:1666–1672

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by interdisciplinary research grants from KU Leuven (IDO/06/004 and GOA 12/008). A.L. was supported by a PhD fellowship from the Agency for Innovation by Science and Technology Flanders (IWT-Vlaanderen). J.N. was supported by a PhD fellowship from the Fund for Scientific Research Flanders (FWO-Vlaanderen), and I.G. was supported by a postdoctoral fellowship from FWO-Flanders. We gratefully thank Lieve Geenen for excellent technical assistance. The authors declare no competing financial interest.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Balschun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laeremans, A., Sabanov, V., Ahmed, T. et al. Distinct and simultaneously active plasticity mechanisms in mouse hippocampus during different phases of Morris water maze training. Brain Struct Funct 220, 1273–1290 (2015). https://doi.org/10.1007/s00429-014-0722-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0722-z

Keywords

Navigation