Skip to main content
Log in

Further immunohistochemical characterization of BRD1 a new susceptibility gene for schizophrenia and bipolar affective disorder

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

We have recently shown that the gene BRD1 is associated with schizophrenia and bipolar affective disorder and that the BRD1 protein (BRD1) which is expressed in neurons may occur in a short and a long variant. The aim of the study was to generate polyclonal antibodies against new BRD1 epitopes enabling discrimination between the long and short BRD1 variants, and elucidate the BRD1 distribution in several human tissues, including the CNS. Polyclonal rabbit antibodies were raised against three different BRD1 epitopes. One (67) was specific for the long BRD1 variant, whereas the two others (63/64 and 65/66) like the original monoclonal mouse antibody (K22) were predicted to stain both variants. Immunohistochemical staining procedures were subsequently performed on paraffin-embedded human cerebral cortex and microarray slides containing 30 different human tissues. Western blotting confirmed the predicted specificity of the developed antibodies. K22, 63/64 and 65/66 displayed a similar neuronal staining pattern characterized by a distinct but weak nuclear staining, while the surrounding cytoplasm and proximal dendrites were more intensely stained. Interestingly, staining with 67 generated in contrast primarily an intense nuclear staining. The new antibodies resulted, furthermore, in a prominent neuroglial reaction characterized by staining of cell bodies, nuclei and glial processes. The tissue microarray analysis revealed that BRD1 was widely distributed in human tissues. The particular expression profile, e.g., the degree of nuclear and/or cytoplasmatic staining, seemed, however, to be highly tissue dependent. These results suggest a general role of BRD1 in the cell and stress that the two BRD1 variants may play different roles in the etiology of psychiatric disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BRD1:

Bromodomain-containing 1 gene peptide

BRD1 :

Bromodomain-containing 1 gene

BRL :

BR140-like gene, now known as BRD1

BRD1-L :

The long BRD1 splice variant

BRD1-S :

The short BRD1 splice variant

HE:

Hematoxylin and eosin stain

K22:

Original monoclonal mouse antibody directed against BRD1

TBS:

Tris-buffered saline

63/64:

Polyclonal rabbit antibody directed against BRD1

65/66:

Polyclonal rabbit antibody directed against BRD1

67:

Polyclonal rabbit antibody directed against BRD1-L

References

  • Badner JA, Gershon ES (2002) Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 7:405–411. doi:10.1038/sj/mp/4001012

    Article  CAS  PubMed  Google Scholar 

  • Berrettini W (2003) Evidence for shared susceptibility in bipolar disorder and schizophrenia. Am J Med Genet Part C 123C:59–64. doi:10.1002/ajmg.c.20014

    Article  PubMed  Google Scholar 

  • Bjarkam CR, Pedersen M, Sørensen JC (2001) New strategies for embedding, orientation and sectioning of small brain specimens enable direct correlation to MR-images, brain atlases, or use of unbiased stereology. J Neurosci Methods 108:153–159

    Article  CAS  PubMed  Google Scholar 

  • Blackwood DHR, Fordyce A, Walker MT, St. Clair DM, Porteous DJ, Muir WJ (2001) Schizophrenia and affective disorders-cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 69:428–433

    Article  CAS  PubMed  Google Scholar 

  • Coon H, Jensen S, Holik J, Hoff M, Myles-Worsley M, Reimherr F, Wender P, Waldo M, Freedman R, Leppert M, Byerley W (1994) Genomic scan for genes predisposing to schizophrenia. Am J Med Genet 54:59–71. doi:10.1002/ajmg.1320540111

    Article  CAS  PubMed  Google Scholar 

  • Corydon TJ, Bross P, Jensen TG, Corydon MJ, Lund TB, Jensen UB, Kim JJ, Gregersen N, Bolund L (1998) Rapid degradation of short-chain acyl-CoA dehydrogenase variants with temperature-sensitive folding defects occurs after import into mitochondria. J Biol Chem 273(21):13065–13071

    Article  CAS  PubMed  Google Scholar 

  • Corydon TJ, Hansen J, Bross P, Jensen TG (2005) Down-regulation of Hsp60 expression by RNAi impairs folding of medium-chain acyl-CoA dehydrogenase wild-type and disease-associated proteins. Mol Genet Metab 85(4):260–270

    Article  CAS  PubMed  Google Scholar 

  • Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14(11):1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen TH, Børglum AD, Mors O, Wang AG, Pinaud M, Flint TJ, Dahl HA, Vang M, Kruse TA, Ewald H (2002) Search for common haplotypes on chromosome 22q in patients with schizophrenia or bipolar disorder from the Faroe Islands. Am J Med Genet 114:245–252. doi:10.1002/ajmg.10191

    Article  CAS  PubMed  Google Scholar 

  • Kelsoe JR, Spence MA, Loetscher E, Foguet M, Sadovnick AD, Remick RA, Flodman P, Khristich J, Mroczkowski-Parker Z, Brown JL, Masser D, Ungerleider S, Rapaport MH, Wishart WL, Luebbert H (2001) A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc Natl Acad Sci USA 98(2):585–590. doi:10.1073/pnas.011358498

    Article  CAS  PubMed  Google Scholar 

  • Kragh PM, Pedersen CB, Schmidt SP, Winter VS, Vajta G, Gregersen N, Bolund L, Corydon TJ (2007) Handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins in transgenic mice. Mol Genet Metab 91(2):128–137

    Article  CAS  PubMed  Google Scholar 

  • Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone SV, Brzustowicz LM, Kaufmann CA, Garver DL, Gurling HMD, Lindholm E, Coon H, Moises HW, Byerley W, Shaw SH, Mesen A, Sherrington R, O’Neill FA, Walsh D, Kendler KS, Ekelund J, Paunio T, Lönnqvist J, Peltonen L, O’Donovan MC, Owen MJ, Wildenauer DB, Maier W, Nestadt G, Blouin J-L, Antonarakis SE, Mowry BJ, Silverman JM, Crowe RR, Cloninger CR, Tsuang MT, Malaspina D, Harkavy-Friedman JM, Svrakic DM, Basset AS, Holcomb J, Kalsi G, McQuillin A, Brynjolfson J, Sigmundsson T, Petursson H, Jazin E, Zoëga T, Helgason T (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 73:34–48

    Article  CAS  PubMed  Google Scholar 

  • McCullagh P, Chaplin T, Meerabux J, Grenzelias D, Lillington D, Poulsom R, Gregorini A, Saha V, Young BD (1999) The cloning, mapping and expression of a novel gene, BRL, related to the AF10 leukaemia gene. Oncogene 18:7442–7452

    Article  CAS  PubMed  Google Scholar 

  • McGuffin P, Owen MJ, Farmer AE (1995) Genetic basis of schizophrenia. Lancet 346(8976):678–682

    Article  CAS  PubMed  Google Scholar 

  • Mowry BJ, Holmans PA, Pulver AE, Gejman PV, Riley B, Wiliams NM, Laurent C, Schwab SG, Wildenauer DB, Bauché S, Owen MJ, Wormley B, Sanders AR, Nestadt G, Liang KY, Duan J, Ribble R, Norton N, Soubigou S, Maier W, Ewen-White KR, deMarchi N, Carpenter B, Walsh D, Williams H, Jay M, Albus M, Nertney DA, Papadimitriou G, O’Neill A, O’Donovan MC, Deleuze J-F, Lerer FB, Dikeos D, Kendler KS, Mallet J, Silverman JM, Crowe RR, Levinson DF (2004) Multicenter linkage study of schizophrenia loci on chromosome 22q. Mol Psychiatry 9:784–795. doi:10.1038/sj.mp.4001481

    Article  CAS  PubMed  Google Scholar 

  • Owen MJ, Craddock N, O’Donovan MC (2005) Schizophrenia: genes at last? Trends Genet 21(9):518–525. doi:10.1016/j.tig.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  • Pantelis C, Yücel M, Wood SJ, Velakoulis D, Sun D, Berger G, Stuart GW, Yung A, Phillips L, McGorry PD (2005) Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 31(3):672–696

    Article  PubMed  Google Scholar 

  • Payne JL, Potash JB, Depaulo JR (2005) Recent findings on the genetic basis of bipolar disorder. Psychiatr Clin N Am 28:481–498. doi:10.1016/j.psc.2005.01.003

    Article  Google Scholar 

  • Potash JB, Depaulo JR Jr (2000) Searching high and low: a review of the genetics of bipolar disorder. Bipolar Disord 2:8–26

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JJ, Olabarria M, Chvatal A, Verkhratsky A (2009) Astroglia in dementia and Alzheimers’s disease. Cell Death Differ 16(3):378–385

    Article  CAS  PubMed  Google Scholar 

  • Schwab SG, Wildenauer DB (1999) Chromosome 22 workshop report. Am J Med Genet 88:276–278

    Article  CAS  PubMed  Google Scholar 

  • Severinsen JE, Bjarkam CR, Kiær-Larsen S, Olsen IM, Nielsen MM, Blechingberg J, Nielsen AL, Holm IE, Foldager L, Young BD, Muir WJ, Blackwood DHR, Corydon TJ, Mors O, Børglum AD (2006) Evidence implicating BRD1 with brain development and susceptibility to both schizophrenia and bipolar affective disorder. Mol Psychiatry 11(12):1126–1138. doi:10.1038/sj.mp.4001885

    Article  CAS  PubMed  Google Scholar 

  • Sørensen JC, Bjarkam CR, Danielsen EH, Simonsen CZ, Geneser FA (2000) Oriented sectioning of irregular tissue blocks in relation to computerized scanning modalities. Results from the domestic pig brain. J Neurosci Methods 104:93–98

    Article  PubMed  Google Scholar 

  • Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E, Gunnarsdottir S, Walker N, Petursson H, Crombie C, Ingason A, Gulcher JR, Stefansson K, St Clair D (2003) Association of neuregulin with schizophrenia confirmed in a Scottish population. Am J Hum Genet 72:83–87

    Article  CAS  PubMed  Google Scholar 

  • Stöber G, Saar K, Rüschendorf F, Meyer J, Nürnberg G, Jatzke S, Franzek E, Reis A, Lesch K-P, Wienker TF, Beckmann H (2000) Splitting schizophrenia: periodic catatonia-susceptibility locus on chromosome 15q15. Am J Hum Genet 67:1201–1207

    PubMed  Google Scholar 

  • Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormley B, Sadek H, Kadami B, Cesare AJ, Gibberman A, Wang X, O’Neill FA, Walsh D, Kendler KS (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71:337–348

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Faraone SV, Lasky-Su J, Tsuang MT (2005) Genome-wide scan of homogeneous subtypes of NIMH genetics initiative schizophrenia families. Psychiatry Res 133:111–122. doi:10.1016/j.psychres.2004.12.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with gratitude the human donors to the Institute of Anatomy and the skillful assistance of Ms. D. Jensen, Mr. A. Meier, Ms. A. Hedemand, Ms. M.M. Hansen & Ms. T. Hindkjær. The Aarhus University Research Foundation, The Danish Medical Research Council, The Foundation for the Advancement of Medical Science, The Lily Benthine Lund Foundation, The Research Foundation of the Danish Medical Association, Pulje til styrkelse af Psykiatrisk Forskning, The Novo Nordic Foundation, The Aase and Ejnar Danielsen Foundation, The Foundation of Direktør Ib Henriksen, The Foundation of Jacob Madsen and Wife, The Foundation of consultant dr. med. E. Geert-Jørgensen and Wife, The Jascha Foundation, and The Foundation of King Christian the 10th financially supported the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Reidies Bjarkam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjarkam, C.R., Corydon, T.J., Olsen, I.M.L. et al. Further immunohistochemical characterization of BRD1 a new susceptibility gene for schizophrenia and bipolar affective disorder. Brain Struct Funct 214, 37–47 (2009). https://doi.org/10.1007/s00429-009-0219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-009-0219-3

Keywords

Navigation