Skip to main content

Advertisement

Log in

Placental C4d deposition is a feature of defective placentation: observations in cases of preeclampsia and miscarriage

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Placental C4d deposition is frequent in preeclampsia, and shallow placentation is a characteristic of both preeclampsia and miscarriage. This study was conducted to determine the relationship among placental C4d, maternal human leukocyte antigen (HLA) antibodies, and placental pathology in preeclampsia and miscarriage cases. The patient population (N = 104) included those with (1) preterm preeclampsia with fetal growth restriction (PE-FGR; n = 21), (2) preterm preeclampsia (PE; n = 20), (3) spontaneous preterm delivery (sPTD; n = 39), and (4) miscarriage (n = 24). C4d immunohistochemistry was performed, and the presence of maternal plasma HLA antibodies was examined. C4d staining of the syncytiotrophoblast was more frequent in PE-FGR patients (76.2 %) than in PE (10.0 %; p < 0.001) and sPTD (2.6 %; p < 0.001) patients. Maternal HLA antibody-positive rate was not different among the study groups. There was a significant correlation between C4d immunoreactivity and placental pathology consistent with maternal vascular underperfusion (p < 0.001) but not with maternal HLA antibody status. In miscarriages, the positive rates of C4d, HLA class I, and HLA class II antibodies were 58.3, 25.0, and 12.5 %, respectively. There was no correlation between the presence of maternal HLA class I or II antibodies and placental C4d immunoreactivity. This study confirms frequent placental C4d deposition in preeclampsia with fetal growth restriction and miscarriage. The association between placental C4d deposition and pathological findings of maternal vascular underperfusion suggests that C4d staining of the syncytiotrophoblast is a consequence of defective placentation rather than of a specific maternal immune response against fetal HLA. The study also demonstrates the usefulness of C4d as a biomarker of placentas at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Racusen LC et al (2004) Banff 2003 meeting report: new diagnostic insights and standards. Am J Transplant 4(10):1562–1566

    Article  PubMed  Google Scholar 

  2. Djamali A et al (2014) Diagnosis and management of antibody-mediated rejection: current status and novel approaches. Am J Transplant 14(2):255–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kedainis RL et al (2009) Focal C4d+ in renal allografts is associated with the presence of donor-specific antibodies and decreased allograft survival. Am J Transplant 9(4):812–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Mauiyyedi S et al (2002) Acute humoral rejection in kidney transplantation: II. Morphology, immunopathology, and pathologic classification. J Am Soc Nephrol 13(3):779–787

    PubMed  Google Scholar 

  5. Lee JY et al (2014) Placental C4d as a common feature of chromosomally normal and abnormal miscarriages. Virchows Arch 464(5):613–620

    Article  CAS  PubMed  Google Scholar 

  6. Shamonki JM et al (2007) Excessive complement activation is associated with placental injury in patients with antiphospholipid antibodies. Am J Obstet Gynecol 196(2):167 e161–165

    Article  Google Scholar 

  7. Minamiguchi S et al (2013) Complement split product C4d deposition in placenta in systemic lupus erythematosus and pregnancy-induced hypertension. Pathol Int 63(3):150–157

    Article  CAS  PubMed  Google Scholar 

  8. Rudzinski E et al (2013) Positive C4d immunostaining of placental villous syncytiotrophoblasts supports host-versus-graft rejection in villitis of unknown etiology. Pediatr Dev Pathol 16(1):7–13

    Article  CAS  PubMed  Google Scholar 

  9. Buurma A et al (2012) Preeclampsia is characterized by placental complement dysregulation. Hypertension 60(5):1332–1337

    Article  CAS  PubMed  Google Scholar 

  10. Lee KA et al (2013) Distinct patterns of C4d immunoreactivity in placentas with villitis of unknown etiology, cytomegaloviral placentitis, and infarct. Placenta 34(5):432–435

    Article  PubMed  Google Scholar 

  11. Milne F et al (2005) The pre-eclampsia community guideline (PRECOG): how to screen for and detect onset of pre-eclampsia in the community. BMJ 330(7491):576–580

    Article  PubMed Central  PubMed  Google Scholar 

  12. Roberts JM, Cooper DW (2001) Pathogenesis and genetics of pre-eclampsia. Lancet 357(9249):53–56

    Article  CAS  PubMed  Google Scholar 

  13. Steegers EA et al (2010) Pre-eclampsia. Lancet 376(9741):631–644

    Article  PubMed  Google Scholar 

  14. Ghulmiyyah L, Sibai B (2012) Maternal mortality from preeclampsia/eclampsia. Semin Perinatol 36(1):56–59

    Article  PubMed  Google Scholar 

  15. Redman CW, Sargent IL (2010) Immunology of pre-eclampsia. Am J Reprod Immunol 63(6):534–543

    Article  CAS  PubMed  Google Scholar 

  16. Chaiworapongsa T et al (2013) Maternal plasma concentrations of angiogenic/antiangiogenic factors in the third trimester of pregnancy to identify the patient at risk for stillbirth at or near term and severe late preeclampsia. Am J Obstet Gynecol 208(4):287 e281–287 e215

    Article  Google Scholar 

  17. Chaiworapongsa T et al (2014) Plasma concentrations of angiogenic/anti-angiogenic factors have prognostic value in women presenting with suspected preeclampsia to the obstetrical triage area: a prospective study. J Matern Fetal Neonatal Med 27(2):132–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Vaisbuch E et al (2011) Circulating angiogenic and antiangiogenic factors in women with eclampsia. Am J Obstet Gynecol 204(2):152 e151–159

    Article  Google Scholar 

  19. Brosens I et al (2011) The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol 204(3):193–201

    Article  PubMed Central  PubMed  Google Scholar 

  20. Brosens JJ et al (2002) The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am J Obstet Gynecol 187(5):1416–1423

    Article  PubMed  Google Scholar 

  21. Burton GJ et al (2009) Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30(6):473–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Khong TY et al (1986) Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol 93(10):1049–1059

    Article  CAS  PubMed  Google Scholar 

  23. Khong TY (2004) Placental vascular development and neonatal outcome. Semin Neonatol 9(4):255–263

    Article  PubMed  Google Scholar 

  24. Jauniaux E et al (2000) Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol 157(6):2111–2122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Burton GJ, Jauniaux E (2004) Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig 11(6):342–352

    Article  CAS  PubMed  Google Scholar 

  26. Becroft DM et al (2005) Placental villitis of unknown origin: epidemiologic associations. Am J Obstet Gynecol 192(1):264–271

    Article  PubMed  Google Scholar 

  27. Redline RW et al (2005) Placental diagnostic criteria and clinical correlation—a workshop report. Placenta 26(Suppl A):S114–S117

    Article  PubMed  Google Scholar 

  28. Redline RW (2008) Placental pathology: a systematic approach with clinical correlations. Placenta 29(Suppl A):S86–S91

    Article  PubMed  Google Scholar 

  29. Kim CJ et al (2010) The frequency, clinical significance, and pathological features of chronic chorioamnionitis: a lesion associated with spontaneous preterm birth. Mod Pathol 23(7):1000–1011

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lee J et al (2011) A signature of maternal anti-fetal rejection in spontaneous preterm birth: chronic chorioamnionitis, anti-human leukocyte antigen antibodies, and C4d. PLoS One 6(2):e16806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. (2000) Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol 183(1):S1–S22

  32. Fenton TR (2003) A new growth chart for preterm babies: Babson and Benda’s chart updated with recent data and a new format. BMC Pediatr 3:13

    Article  PubMed Central  PubMed  Google Scholar 

  33. Girardi G et al (2006) Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 203(9):2165–2175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Huppertz B (2008) Placental origins of preeclampsia: challenging the current hypothesis. Hypertension 51(4):970–975

    Article  CAS  PubMed  Google Scholar 

  35. Burton GJ, Yung HW (2011) Endoplasmic reticulum stress in the pathogenesis of early-onset pre-eclampsia. Pregnancy Hypertens 1(1–2):72–78

    PubMed Central  PubMed  Google Scholar 

  36. Frank R et al (2013) Correlation of circulating donor-specific anti-HLA antibodies and presence of C4d in endomyocardial biopsy with heart allograft outcomes: a single-center, retrospective study. J Heart Lung Transplant 32(4):410–417

    Article  PubMed  Google Scholar 

  37. Loupy A et al (2013) Complement-binding anti-HLA antibodies and kidney-allograft survival. N Engl J Med 369(13):1215–1226

    Article  CAS  PubMed  Google Scholar 

  38. Dong J et al (1999) Strategies for targeting complement inhibitors in ischaemia/reperfusion injury. Mol Immunol 36(13–14):957–963

    Article  CAS  PubMed  Google Scholar 

  39. Weiser MR et al (1996) Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J Exp Med 183(5):2343–2348

    Article  CAS  PubMed  Google Scholar 

  40. Hamer R et al (2012) Human leukocyte antigen-specific antibodies and gamma-interferon stimulate human microvascular and glomerular endothelial cells to produce complement factor C4. Transplantation 93(9):867–873

    Article  CAS  PubMed  Google Scholar 

  41. Bulla R et al (2009) Complement production by trophoblast cells at the feto-maternal interface. J Reprod Immunol 82(2):119–125

    Article  CAS  PubMed  Google Scholar 

  42. Jauniaux E, Burton GJ (2005) Pathophysiology of histological changes in early pregnancy loss. Placenta 26(2–3):114–123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012R1A2A2A01012368) and in part by a grant (14-521) from the Asan Institute for Life Sciences, Seoul, South Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Jai Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 171 kb)

ESM 2

(PDF 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.N., Yoon, B.H., Lee, J.Y. et al. Placental C4d deposition is a feature of defective placentation: observations in cases of preeclampsia and miscarriage. Virchows Arch 466, 717–725 (2015). https://doi.org/10.1007/s00428-015-1759-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1759-y

Keywords

Navigation