Skip to main content
Log in

Ancillary testing of liquid-based cytology specimens for identification of patients at high risk of cervical cancer

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Integration of human papillomavirus DNAs into the host genome is crucial to the development of cervical cancer. Overexpression of the P16 protein has been reported in cervical intraepithelial neoplasia (CIN) as well as cervical cancer. Such molecular biomarkers have been utilized for ancillary testing of liquid-based cytology specimens; however, their clinical application remains controversial. To detect CIN 2 or more advanced lesions, 153 liquid-based cytology (LBC) specimens were investigated to determine the physical status of the human papillomavirus (HPV) DNA by in situ hybridization (ISH) and to detect overexpression of the P16 protein by immunocytochemistry combined with HPV genotyping by polymerase chain reaction. The combination of ISH, P16 immunocytochemistry, and LBC showed high sensitivity (89.3%) as well as high specificity (92.6%). We confirmed the usefulness of P16 immunocytochemistry combined with ISH and HPV genotyping as ancillary molecular–biological tests of LBC specimens for identifying patients at high risk of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parkin DM, Bray F (2006) Chapter 2: the burden of HPV-related cancers. Vaccine 24(Suppl 3):S11–S25

    Article  Google Scholar 

  2. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  PubMed  CAS  Google Scholar 

  3. zur Hausen H (1991) Viruses in human cancers. Science 254:1167–1173

    Article  PubMed  CAS  Google Scholar 

  4. zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350

    Article  PubMed  CAS  Google Scholar 

  5. Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83

    Article  PubMed  CAS  Google Scholar 

  6. Duensing S, Duensing A, Flores ER, Do A, Lambert PF, Munger K (2001) Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J Virol 75:7712–7716

    Article  PubMed  CAS  Google Scholar 

  7. Jeon S, Allen-Hoffmann BL, Lambert PF (1995) Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol 69:2989–2997

    PubMed  CAS  Google Scholar 

  8. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707

    Article  PubMed  CAS  Google Scholar 

  9. Li Y, Nichols MA, Shay JW, Xiong Y (1994) Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res 54:6078–6082

    PubMed  CAS  Google Scholar 

  10. Bringold F, Serrano M (2000) Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 35:317–329

    Article  PubMed  CAS  Google Scholar 

  11. Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G (1996) Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 16:859–867

    PubMed  CAS  Google Scholar 

  12. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  PubMed  CAS  Google Scholar 

  13. Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y, Sharrocks AD, Peters G, Hara E (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409:1067–1070

    Article  PubMed  CAS  Google Scholar 

  14. Parry D, Bates S, Mann DJ, Peters G (1995) Lack of cyclin D-Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product. EMBO J 14:503–511

    PubMed  CAS  Google Scholar 

  15. Sakaguchi M, Fujii Y, Hirabayashi H, Yoon HE, Komoto Y, Oue T, Kusafuka T, Okada A, Matsuda H (1996) Inversely correlated expression of p16 and Rb protein in non-small cell lung cancers: an immunohistochemical study. Int J Cancer 65:442–445

    Article  PubMed  CAS  Google Scholar 

  16. Khleif SN, DeGregori J, Yee CL, Otterson GA, Kaye FJ, Nevins JR, Howley PM (1996) Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc Natl Acad Sci U S A 93:4350–4354

    Article  PubMed  CAS  Google Scholar 

  17. Sano T, Oyama T, Kashiwabara K, Fukuda T, Nakajima T (1998) Immunohistochemical overexpression of p16 protein associated with intact retinoblastoma protein expression in cervical cancer and cervical intraepithelial neoplasia. Pathol Int 48:580–585

    Article  PubMed  CAS  Google Scholar 

  18. Ishikawa M, Fujii T, Masumoto N, Saito M, Mukai M, Nindl I, Ridder R, Fukuchi T, Kubushiro K, Tsukazaki K, Nozawa S (2003) Correlation of p16INK4A overexpression with human papillomavirus infection in cervical adenocarcinomas. Int J Gynecol Pathol 22:378–385

    Article  PubMed  Google Scholar 

  19. Ishikawa M, Fujii T, Saito M, Nindl I, Ono A, Kubushiro K, Tsukazaki K, Mukai M, Nozawa S (2006) Overexpression of p16 INK4a as an indicator for human papillomavirus oncogenic activity in cervical squamous neoplasia. Int J Gynecol Cancer 16:347–353

    Article  PubMed  CAS  Google Scholar 

  20. Masumoto N, Fujii T, Ishikawa M, Saito M, Iwata T, Fukuchi T, Susumu N, Mukai M, Kubushiro K, Tsukazaki K, Nozawa S (2003) P16 overexpression and human papillomavirus infection in small cell carcinoma of the uterine cervix. Hum Pathol 34:778–783

    Article  PubMed  CAS  Google Scholar 

  21. Sano T, Hikino T, Xue Q, Saito T, Kashiwabara K, Oyama T, Nakajima T (2000) Immunohistochemical inactivation of p14ARF concomitant with MDM2 overexpression inversely correlates with p53 overexpression in oral squamous cell carcinoma. Pathol Int 50:709–716

    Article  PubMed  CAS  Google Scholar 

  22. Sano T, Oyama T, Kashiwabara K, Fukuda T, Nakajima T (1998) Expression status of p16 protein is associated with human papillomavirus oncogenic potential in cervical and genital lesions. Am J of Pathol 153:1741–1748

    CAS  Google Scholar 

  23. Keating JT, Cviko A, Riethdorf S, Riethdorf L, Quade BJ, Sun D, Duensing S, Sheets EE, Munger K, Crum CP (2001) Ki-67, cyclin E, and p16INK4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia. Am J Surg Pathol 25:884–891

    Article  PubMed  CAS  Google Scholar 

  24. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, Dallenbach-Hellweg G, Schmidt D, von Knebel Doeberitz M (2001) Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 92:276–284

    Article  PubMed  CAS  Google Scholar 

  25. Lizard G, Demares-Poulet MJ, Roignot P, Gambert P (2001) In situ hybridization detection of single-copy human papillomavirus on isolated cells, using a catalyzed signal amplification system: GenPoint. Diagn Cytopathol 24:112–116

    Article  PubMed  CAS  Google Scholar 

  26. Alameda F, Pijuan L, Ferrer L, Marinoso ML, Muset M, Soler I, Gimferrer E, Serrano S (2005) Human papilloma virus detection in liquid cytology, in situ hybridization and polymerase chain reaction. Virchows Arch 446:202–203

    Article  PubMed  CAS  Google Scholar 

  27. Guo M, Patel SJ, Chovanec M, Jan YJ, Tarco E, Bevers TB, Anderson K, Sneige N (2007) A human papillomavirus testing system in women with abnormal Pap results: a comparison study with follow-up biopsies. Acta Cytol 51:749–754

    PubMed  Google Scholar 

  28. Bewtra C, Xie Q, Soundararajan S, Gatalica Z, Hatcher L (2005) Genital human papillomavirus testing by in situ hybridization in liquid atypical cytologic materials and follow-up biopsies. Acta Cytol 49:127–131

    PubMed  CAS  Google Scholar 

  29. Trunk MJ, Dallenbach-Hellweg G, Ridder R, Petry KU, Ikenberg H, Schneider V, von Knebel Doeberitz M (2004) Morphologic characteristics of p16INK4a-positive cells in cervical cytology samples. Acta Cytol 48:771–782

    PubMed  Google Scholar 

  30. Bose S, Evans H, Lantzy L, Scharre K, Youssef E (2005) p16(INK4A) is a surrogate biomarker for a subset of human papilloma virus-associated dysplasias of the uterine cervix as determined on the Pap smear. Diagn Cytopathol 32:21–24

    Article  PubMed  Google Scholar 

  31. Yoshida T, Fukuda T, Sano T, Kanuma T, Owada N, Nakajima T (2004) Usefulness of liquid-based cytology specimens for the immunocytochemical study of p16 expression and human papillomavirus testing: a comparative study using simultaneously sampled histology materials. Cancer 102:100–108

    Article  PubMed  CAS  Google Scholar 

  32. Saqi A, Pasha TL, McGrath CM, Yu GH, Zhang P, Gupta P (2002) Overexpression of p16INK4A in liquid-based specimens (SurePath) as marker of cervical dysplasia and neoplasia. Diagn Cytopathol 27:365–370

    Article  PubMed  Google Scholar 

  33. Wentzensen N, Bergeron C, Cas F, Eschenbach D, Vinokurova S, von Knebel Doeberitz M (2005) Evaluation of a nuclear score for p16INK4a-stained cervical squamous cells in liquid-based cytology samples. Cancer 105:461–467

    Article  PubMed  Google Scholar 

  34. Sahebali S, Depuydt CE, Boulet GA, Arbyn M, Moeneclaey LM, Vereecken AJ, Van Marck EA, Bogers JJ (2006) Immunocytochemistry in liquid-based cervical cytology: analysis of clinical use following a cross-sectional study. Int J Cancer 118:1254–1260

    Article  PubMed  CAS  Google Scholar 

  35. Bibbo M, Klump WJ, DeCecco J, Kovatich AJ (2002) Procedure for immunocytochemical detection of P16INK4A antigen in thin-layer, liquid-based specimens. Acta Cytol 46:25–29

    PubMed  Google Scholar 

  36. Pientong C, Ekalaksananan T, Swadpanich U, Kongyingyoes B, Kritpetcharat O, Yuenyao P, Ruckait N (2003) Immunocytochemical detection of p16INK4a protein in scraped cervical cells. Acta Cytol 47:616–623

    PubMed  Google Scholar 

  37. Monsonego J, Pollini G, Evrard MJ, Sednaoui P, Monfort L, Quinzat D, Dachez R, Syrjanen K (2007) P16(INK4a) immunocytochemistry in liquid-based cytology samples in equivocal Pap smears: added value in management of women with equivocal Pap smear. Acta Cytol 51:755–766

    PubMed  Google Scholar 

  38. Carydis VB, Walker T, Wing A, Colgan TJ (2007) Utility of p16(ink4a) immunocytochemistry in liquid-based cytology specimens from women treated for high-grade squamous intraepithelial lesions. Acta Cytol 51:517–522

    PubMed  Google Scholar 

  39. Nieh S, Chen SF, Chu TY, Lai HC, Fu E (2004) Expression of p16INK4A in Pap smears containing atypical glandular cells from the uterine cervix. Acta Cytol 48:173–180

    PubMed  Google Scholar 

  40. Ostor AG (1993) Natural history of cervical intraepithelial neoplasia: a critical review. Int J Gynecol Pathol 12:186–192

    Article  PubMed  CAS  Google Scholar 

  41. Solomon D, Davey D, Kurman R, Moriarty A, O’Connor D, Prey M, Raab S, Sherman M, Wilbur D, Wright T Jr., Young N (2002) The 2001 Bethesda System: terminology for reporting results of cervical cytology. Jama 287:2114–2119

    Article  PubMed  Google Scholar 

  42. Yoshikawa H, Kawana T, Kitagawa K, Mizuno M, Yoshikura H, Iwamoto A (1991) Detection and typing of multiple genital human papillomaviruses by DNA amplification with consensus primers. Jpn J Cancer Res 82:524–531

    PubMed  CAS  Google Scholar 

  43. Masumoto N, Fujii T, Ishikawa M, Mukai M, Saito M, Iwata T, Fukuchi T, Kubushiro K, Tsukazaki K, Nozawa S (2003) Papanicolaou tests and molecular analyses using new fluid-based specimen collection technology in 3000 Japanese women. Br J Cancer 88:1883–1888

    Article  PubMed  CAS  Google Scholar 

  44. Hopman AH, Kamps MA, Smedts F, Speel EJ, Herrington CS, Ramaekers FC (2005) HPV in situ hybridization: impact of different protocols on the detection of integrated HPV. Int J Cancer 115:419–428

    Article  PubMed  CAS  Google Scholar 

  45. Cooper K, Herrington CS, Stickland JE, Evans MF, McGee JO (1991) Episomal and integrated human papillomavirus in cervical neoplasia shown by non-isotopic in situ hybridisation. J Clin Pathol 44:990–996

    Article  PubMed  CAS  Google Scholar 

  46. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27

    Article  PubMed  CAS  Google Scholar 

  47. Matsukura T, Koi S, Sugase M (1989) Both episomal and integrated forms of human papillomavirus type 16 are involved in invasive cervical cancers. Virology 172:63–72

    Article  PubMed  CAS  Google Scholar 

  48. Durst M, Kleinheinz A, Hotz M, Gissman L (1985) The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. J Gen Virol 66:1515–1522

    Article  PubMed  Google Scholar 

  49. Peitsaro P, Johansson B, Syrjanen S (2002) Integrated human papillomavirus type 16 is frequently found in cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique. J Clin Microbiol 40:886–891

    Article  PubMed  CAS  Google Scholar 

  50. Fujii T, Masumoto N, Saito M, Hirao N, Niimi S, Mukai M, Ono A, Hayashi S, Kubushiro K, Sakai E, Tsukazaki K, Nozawa S (2005) Comparison between in situ hybridization and real-time PCR technique as a means of detecting the integrated form of human papillomavirus 16 in cervical neoplasia. Diagn Mol Pathol 14:103–108

    Article  PubMed  CAS  Google Scholar 

  51. Algeciras-Schimnich A, Policht F, Sitailo S, Song M, Morrison L, Sokolova I (2007) Evaluation of quantity and staining pattern of human papillomavirus (HPV)-infected epithelial cells in thin-layer cervical specimens using optimized HPV-CARD assay. Cancer 111:330–338

    Article  PubMed  CAS  Google Scholar 

  52. Schiller CL, Nickolov AG, Kaul KL, Hahn EA, Hy JM, Escobar MT, Watkin WG, Sturgis CD (2004) High-risk human papillomavirus detection: a split-sample comparison of hybrid capture and chromogenic in situ hybridization. Am J Clin Pathol 121:537–545

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a Grant-in-Aid for Scientific Research (C) Japan Society for the Promotion of Science and Research Grants for Life Science and Medicine. We thank Ms. Yuki Kamihara from Dako Japan Inc. and Dr. Katsuaki Dan from Keio University Central Research Laboratory for their technical assistance. We are grateful to Dr. Mattias Durst for the gift of the PK114/K plasmid containing the variant HPV 16 genome.

Disclosure/Conflict of interest

I have no conflict of interest to declare in relation to submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuma Fujii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, T., Saito, M., Iwata, T. et al. Ancillary testing of liquid-based cytology specimens for identification of patients at high risk of cervical cancer. Virchows Arch 453, 545–555 (2008). https://doi.org/10.1007/s00428-008-0687-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-008-0687-5

Keywords

Navigation