Skip to main content
Log in

Independent evolution of complex development in animals and plants: deep homology and lateral gene transfer

  • Short Communication
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The evolution of multicellularity is a premier example of phenotypic convergence: simple multicellularity evolved independently many times, and complex multicellular phenotypes are found in several distant groups. Furthermore, both animal and plant lineages have independently reached extreme levels of morphological, functional, and developmental complexity. This study explores the genetic basis for the parallel evolution of complex multicellularity and development in the animal and green plant (i.e., green algae and land plants) lineages. Specifically, the study (i) identifies the SAND domain—a DNA-binding domain with important roles in the regulation of cell proliferation and differentiation, as unique to animals, green algae, and land plants; and (ii) suggests that the parallel deployment of this ancestral domain in similar regulatory roles could have contributed to the independent evolution of complex development in these distant groups. Given the deep animal-green plant divergence, the limited distribution of the SAND domain is best explained by invoking a lateral gene transfer (LGT) event from a green alga to an early metazoan. The presence of a sequence motif specifically shared by a family of SAND-containing transcription factors involved in the evolution of complex multicellularity in volvocine algae and two types of SAND proteins that emerged early in the evolution of animals is consistent with this scenario. Overall, these findings imply that (i) in addition to be involved in the evolution of similar phenotypes, deep homologous sequences can also contribute to shaping parallel evolutionary trajectories in distant lineages, and (ii) LGT could provide an additional source of latent homologous sequences that can be deployed in analogous roles and affect the evolutionary potentials of distantly related groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA (2017) Toward a predictive framework for convergent evolution: integrating natural history, genetic mechanisms, and consequences for the diversity of life. Am Nat 190:S1–S12

    Article  PubMed  Google Scholar 

  • Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z (2003) ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 13:627–637

  • Barker HE, Smyth GK, Wettenhall J, Ward TA, Bath ML, Lindeman GJ, Visvader JE (2008) Deaf-1 regulates epithelial cell proliferation and side-branching in the mammary gland. BMC Dev Biol 8:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottomley MJJ, Collard MWW, Huggenvik JII, Liu Z, Gibson TJJ, Sattler M (2001) The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol 8:626–633

    Article  CAS  PubMed  Google Scholar 

  • Carles CC (2005) ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis. Development 132:897–911

  • Carles CC, Fletcher JC (2009) The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants. Genes Dev 23:2723–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carles CC, Fletcher JC (2010) Missing links between histones and RNA Pol II arising from SAND? Epigenetics 5:381–385

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  CAS  PubMed  Google Scholar 

  • Charoensawan V, Wilson D, Teichmann SA (2010) Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic Acids Res 38:7364–7377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L-Q, Luo J-H, Cui Z-H, Xue M, Wang L, Zhang X-Y, Pawlowski WP, He Y (2017) ATX3, ATX4, and ATX5 encode putative H3K4 methyltransferases and are critical for plant development. Plant Physiol 174:1795–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, Lang BF, Eliáš M (2015) Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci 112:E693–E699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan L, Nishii I, Howard A, Kirk DL, Miller SM (2006) Orthologs and paralogs of regA, a master cell-type regulatory gene in Volvox carteri. Curr Genet 50:61–72

  • Duncan L, Nishii I, Harryman A, Buckley S, Howard A, Friedman NR, Miller SM (2007) The VARL gene family and the evolutionary origins of the master cell-type regulatory gene, regA, in Volvox carteri. J Mol Evol 65:1–11

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JC (2001) The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis. Development 128:1323–1333

  • Grochau-Wright ZI, Hanschen ER, Ferris PJ, Hamaji T, Nozaki H, Olson BJSC, Michod RE (2017) Genetic basis for soma is present in undifferentiated volvocine green algae. J Evol Biol 38:42–49

    Google Scholar 

  • Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38:621–654

    Article  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hall BK (2012) Parallelism, deep homology, and evo-devo. Evol Dev 14:29–33

    Article  PubMed  Google Scholar 

  • Hanschen ER, Ferris PJ, Michod RE (2014) Early evolution of the genetic basis for soma in the Volvocaceae. Evolution 68:2014–2025

  • Herron MD, Hackett JD, Aylward FO, Michod RE (2009) Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci U S A 106:3254–3258

    Article  PubMed  PubMed Central  Google Scholar 

  • Huskey RJ, Griffin BE (1979) Genetic control of somatic cell differentiation in Volvox: analysis of somatic regenerator mutants. Dev Biol 72:226–235

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ et al (2014) The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889

  • Kirk MM, Ransick A, McRae SE, Kirk DL (1993) The relationship between cell size and cell fate in Volvox carteri. J Cell Biol 123:191–208

  • Kirk MM, Stark K, Miller SM, Muller W, Taillon B, Gruber H, Schmitt R, Kirk DL (1999) regA, a Volvox gene that plays a central role in germ-soma differentiation, encodes a novel regulatory protein. Development 126:639–647

  • Kishore SP, Stiller JW, Deitsch KW (2013) Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans. BMC Evol Biol 13:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll AH (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci 39:217–239

    Article  CAS  Google Scholar 

  • Kulkarni M, Shakes DC, Guevel K, Smith HE (2012) SPE-44 implements sperm cell fate. PLoS Genet 8:587–600

  • Lang D, Rensing SA (2015) The evolution of transcriptional regulation in the viridiplantae and its correlation with morphological complexity. In: Nedelcu AM, Ruiz-Trillo I (eds) Evolutionary Transitions to Multicellularity. Springer, Dordrecht, pp 301–333

    Google Scholar 

  • Leger MM, Eme L, Stairs CW, Roger AJ (2018) Demystifying eukaryote lateral gene transfer (Response to Martin 2017 DOI: 10.1002/bies.201700115). BioEssays 40:1700242

    Article  Google Scholar 

  • Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH (2017) Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. Biochim Biophys Acta - Gene Regul Mech 1860:3–20

    Article  CAS  PubMed  Google Scholar 

  • Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424:147–151

    Article  CAS  PubMed  Google Scholar 

  • Li C, Xu J, Li J, Li Q, Yang H (2014) Involvement of Arabidopsis histone acetyltransferase HAC family genes in the ethylene signaling pathway. Plant Cell Physiol 55:426–435

  • Lloret-Fernández C, Maicas M, Mora-Martínez C, Artacho A, Jimeno-Martín Á, Chirivella L, Weinberg P, Flames N (2018) A transcription factor collective defines the HSN serotonergic neuron regulatory landscape. Elife 7:e32785

  • Meissner M, Stark K, Cresnar B, Kirk DL, Schmitt R (1999) Volvox germline-specific genes that are putative targets of RegA repression encode chloroplast proteins. Curr Genet 36:363–370

  • de Mendoza A, Sebe-Pedros A, Sestak MS, Matejcic M, Torruella G, Domazet-Loso T, Ruiz-Trillo I (2013) Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc Natl Acad Sci USA 110:E4858–E4866

  • Meyerowitz EM (2002) Plants compared to animals: the broadest comparative study of development. Science 295:1482–1485

    Article  CAS  PubMed  Google Scholar 

  • Nagy LG, Ohm RA, Kovács GM, Floudas D, Riley R, Gácser A, Sipiczki M, Davis JM, Doty SL, de Hoog GS et al (2014) Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat Commun 5:4471

  • Nakagawa T, Tsuruma K, Uehara T, Nomura Y (2008) GMEB1, a novel endogenous caspase inhibitor, prevents hypoxia- and oxidative stress-induced neuronal apoptosis. Neurosci Lett 438:34–37 

  • Nedelcu AM (2009) Environmentally induced responses co-opted for reproductive altruism. Biol Lett 5:805–808

    Article  PubMed  PubMed Central  Google Scholar 

  • Nedelcu AM, Michod RE (2006) The evolutionary origin of an altruistic gene. Mol Biol Evol 23:1460–1464

    Article  CAS  PubMed  Google Scholar 

  • Nedelcu AM, Miles IH, Fagir AM, Karol K (2008) Adaptive eukaryote-to-eukaryote lateral gene transfer: Stress-related genes of algal origin in the closest unicellular relatives of animals. J Evol Biol 21:1852–1860

    Article  CAS  PubMed  Google Scholar 

  • Nedelcu AM, Blakney AJC, Logue KD (2009) Functional replacement of a primary metabolic pathway via multiple independent eukaryote-to-eukaryote gene transfers and selective retention. J Evol Biol 22:1882–1894

    Article  CAS  PubMed  Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  • Ni T, Yue J, Sun G, Zou Y, Wen J, Huang J (2012) Ancient gene transfer from algae to animals: Mechanisms and evolutionary significance. BMC Evol Biol 12:83

  • Pires HR, Monfared MM, Shemyakina EA, Fletcher JC (2014) ULTRAPETALA trxG genes interact with kanadi transcription factor genes to regulate Arabidopsis gynoecium patterning. Plant Cell Online 26:4345–4361

  • Radhakrishnan K, Bhagya KP, Kumar AT, Devi AN, Sengottaiyan J, Kumar PG (2016) Autoimmune regulator (AIRE) is expressed in spermatogenic cells, and it altered the expression of several nucleic-acid-binding and cytoskeletal proteins in germ cell 1 spermatogonial (GC1-spg) cells. Mol Cell Proteomics 15:2686–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renn SCP, Machado HE, Duftner N, Sessa AK, Harris RM, Hofmann HA (2018) Gene expression signatures of mating system evolution. Genome 61:287–297

  • Ringrose JH, van den Toorn HWP, Eitel M, Post H, Neerincx P, Schierwater B, Maarten Altelaar AF, Heck AJR (2013) Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nat Commun 4:1408

    Article  CAS  PubMed  Google Scholar 

  • Roelants K, Fry BG, Norman JA, Clynen E, Schoofs L, Bossuyt F (2010) Identical skin toxins by convergent molecular adaptation in frogs. Curr Biol 20:125–130

    Article  CAS  PubMed  Google Scholar 

  • Saare M, Rebane A, Rajashekar B, Vilo J, Peterson P (2012) Autoimmune regulator is acetylated by transcription coactivator CBP/p300. Exp Cell Res 318:1767–1778

    Article  CAS  PubMed  Google Scholar 

  • Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, Engstrom A, Zhu H, Sundaresan TK, Miyamoto DT et al (2015) A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods 12:685–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller CE, Wang CL, Beck-engeser G, Goss L, Scott HS, Anderson MS, Wabl M (2008) Expression of aire and the early wave of apoptosis in spermatogenesis. J Immunol 180:1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    Article  CAS  PubMed  Google Scholar 

  • Tarazona OA, Slota LA, Lopez DH, Zhang G, Cohn MJ (2016) The genetic program for cartilage development has deep homology within Bilateria. Nature 533:86–89

    Article  CAS  PubMed  Google Scholar 

  • Tschopp P, Tabin CJ (2017) Deep homology in the age of next-generation sequencing. Philos Trans R Soc B Biol Sci 372:20150475–20150478

    Article  CAS  Google Scholar 

  • Veraksa A, Kennison J, McGinnis W (2002) DEAF-1 function is essential for the early embryonic development of Drosophila. Genesis 33:67–76

  • Weirauch MT, Hughes TR (2011) A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. In: Hughes TR (ed) A Handbook of Transcription Factors. Springer, New York, pp 25–73

  • Wilhelmsson PKI, Mühlich C, Ullrich KK, Rensing SA (2017) Comprehensive genome-wide classification reveals that many plant-specific transcription factors evolved in streptophyte algae. Genome Biol Evol 9:3384–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue J, Sun G, Hu X, Huang J (2013) The scale and evolutionary significance of horizontal gene transfer in the choanoflagellate Monosiga brevicollis. BMC Genomics 14:729

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada, and the US National Science Foundation (DEB-1457701). Discussions during the early stages of this project and manuscript preparation with Erik Hanschen, Matthew Herron, Zachariah Grochau-Wright, and Adrian Reyes-Prieto are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora M. Nedelcu.

Additional information

Communicated by Siegfried Roth

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.03 mb)

ESM 2

(XLSX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedelcu, A.M. Independent evolution of complex development in animals and plants: deep homology and lateral gene transfer. Dev Genes Evol 229, 25–34 (2019). https://doi.org/10.1007/s00427-019-00626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-019-00626-8

Keywords

Navigation