Skip to main content
Log in

Imitation and matching of meaningless gestures: distinct involvement from motor and visual imagery

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to understand the underlying cognitive processes of imitation and matching of meaningless gestures. Neuropsychological evidence obtained in brain damaged patients, has shown that distinct cognitive processes supported imitation and matching of meaningless gestures. Left-brain damaged (LBD) patients failed to imitate while right-brain damaged (RBD) patients failed to match meaningless gestures. Moreover, other studies with brain damaged patients showed that LBD patients were impaired in motor imagery while RBD patients were impaired in visual imagery. Thus, we hypothesize that imitation of meaningless gestures might rely on motor imagery, whereas matching of meaningless gestures might be based on visual imagery. In a first experiment, using a correlational design, we demonstrated that posture imitation relies on motor imagery but not on visual imagery (Experiment 1a) and that posture matching relies on visual imagery but not on motor imagery (Experiment 1b). In a second experiment, by manipulating directly the body posture of the participants, we demonstrated that such manipulation evokes a difference only in imitation task but not in matching task. In conclusion, the present study provides direct evidence that the way we imitate or we have to compare postures depends on motor imagery or visual imagery, respectively. Our results are discussed in the light of recent findings about underlying mechanisms of meaningful and meaningless gestures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Conceptual mediation specifies the determining features of the gesture independently of arbitrary variations of its visual appearance caused by differences between demonstrating persons and between angles of view under which they are perceived (see Goldenberg, 1999).

  2. α = covariance(x, y)/variance(x) where x is the degree of the orientation of the hand (expressed in °) and y is the RT for each orientation (expressed in ms).

  3. To compute the slope of the motor imagery task, we did not take into account the 270° orientation. Indeed, it has been previously shown that the transformation of the the 180° to the 270° orientation is not linear and depends on the laterality of the hand. It has been assumed that this effect reveals biomechanical constraints (e.g., Parsons, 1994). Thus, the slopes for visual imagery task and motor imagery task were computed in the same range (i.e., 0°–180°).

  4. α = covariance(x, y)/variance(x) where x is the degree of the orientation of the right model relative to the left model (expressed in °) and y is the RT for each orientation (expressed in ms).

References

  • Adolphs, R. (2003). Cognitive neuroscience of human social behavior. Nature Reviews Neuroscience, 4, 165–178.

    Article  PubMed  Google Scholar 

  • Cooper, L. A. (1975). Mental rotation of random two-dimensional shapes. Cognitive Psychology, 7, 20–43. doi:10.1016/0010-0285(75)90003-1.

    Article  Google Scholar 

  • Cubelli, R., Marchetti, C., Boscolo, G., & Della Sala, S. (2000). Cognition in action: Testing a model of limb apraxia. Brain and Cognition, 44(2), 144–165. doi:10.1006/brcg.2000.1226.

    Article  PubMed  Google Scholar 

  • de Lange, F. P., Helmich, R. C., & Toni, I. (2006). Posture influences motor imagery: An fMRI study. NeuroImage, 33(2), 609–617. doi:10.1016/j.neuroimage.2006.07.017.

    Article  PubMed  Google Scholar 

  • Decety, J. (1996). Do imagined and executed actions share the same neural substrate? Cognitive Brain Research, 3(2), 87–93. doi:10.1016/0926-6410(95)00033-X.

    Article  PubMed  Google Scholar 

  • Decety, J., Grèzes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., … Fazio, F. (1997). Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain, 120, 1763–1777. doi:10.1093/brain/120.10.1763.

    Article  PubMed  Google Scholar 

  • Decety, J., & Ingvar, D. H. (1990). Brain structures participating in mental simulation of motor behavior: A neuropsychological interpretation. Acta Psychologica, 73(1), 13–34. doi:10.1016/0001-6918(90)90056-L.

    Article  PubMed  Google Scholar 

  • Goldenberg, G. (1995). Imitating gestures and manipulating a mannikin—The representation of the human body in ideomotor apraxia. Neuropsychologia, 33(1), 63–72. doi:10.1016/0028-3932(94)00104-W.

    Article  PubMed  Google Scholar 

  • Goldenberg, G. (1999). Matching and imitation of hand and finger postures in patients with damage in the left or right hemispheres. Neuropsychologia, 37(5), 559–566. doi:10.1016/S0028-3932(98)00111-0.

    Article  PubMed  Google Scholar 

  • Goldenberg, G. (2001). Imitation and matching of hand and finger postures. NeuroImage, 14, 132–136. doi:10.1006/nimg.2001.0820.

    Article  Google Scholar 

  • Goldenberg, G. (2013). Apraxia: The cognitive side of motor control. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Goldenberg, G., & Hagmann, S. (1997). The meaning of meaningless gestures: A study of visuo-imitative apraxia. Neuropsychologia, 35(3), 333–341. doi:10.1016/S0028-3932(96)00085-1.

    Article  PubMed  Google Scholar 

  • Hodges, J. R., Bozeat, S., Lambon Ralph, M. A., Patterson, K., & Spatt, J. (2000). The role of conceptual knowledge in object use evidence from semantic dementia. Brain, 123, 1913–1925. doi:10.1093/brain/123.9.1913.

    Article  PubMed  Google Scholar 

  • Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8(2), 71–78. doi:10.1016/j.tics.2003.12.002.

    Article  PubMed  Google Scholar 

  • Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemisphere: A computational approach. Psychological Review, 94, 148–175.

    Article  PubMed  Google Scholar 

  • Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 75–78. doi:10.1126/science.198.4312.75.

    Article  PubMed  Google Scholar 

  • Negri, G. A. L., Rumiati, R. I., Zadini, A., Ukmar, M., Mahon, B. Z., & Caramazza, A. (2007). What is the role of motor simulation in action and object recognition? Evidence from apraxia. Cognitive Neuropsychology, 24(8), 795–816. doi:10.1080/02643290701707412.

    Article  PubMed  Google Scholar 

  • Ochipa, C., Rothi, L. J., & Heilman, K. M. (1989). Ideational apraxia: A deficit in tool selection and use. Annals of Neurology, 25(2), 190–193. doi:10.1002/ana.410250214.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  Google Scholar 

  • Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 709–730. doi:10.1037/0096-1523.20.4.709.

    PubMed  Google Scholar 

  • Pelgrims, B., Andres, M., & Olivier, E. (2009). Double dissociation between motor and visual imagery in the posterior parietal cortex. Cerebral Cortex, 19(10), 2298–2307. doi:10.1093/cercor/bhn248.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.

    Article  PubMed  Google Scholar 

  • Rumiati, R. I., Carmo, J. C., & Corradi-Dell’Acqua, C. (2009). Neuropsychological perspectives on the mechanisms of imitation. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 364(1528), 2337–2347. doi:10.1098/rstb.2009.0063.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rumiati, R. I., Tomasino, B., Vorano, L., Umiltà, C., & De Luca, G. (2001). Selective deficit of imagining finger configurations. Cortex, 37, 730–733.

    Article  PubMed  Google Scholar 

  • Schwoebel, J., & Coslett, H. B. (2005). Evidence for multiple, distinct representations of the human body. Journal of Cognitive Neuroscience, 17(4), 543–553. doi:10.1162/0898929053467587.

    Article  PubMed  Google Scholar 

  • Shiffrar, M., & Freyd, J. J. (1990). Apparent motion of the human body. Psychological Science, 1, 257–264.

    Article  Google Scholar 

  • Simmons, K., & Barsalou, L. W. (2003). The similarity-in-topography principle: Reconciling theories of conceptual deficits. Cognitive Neuropsychology, 20, 451–486.

    Article  PubMed  Google Scholar 

  • Sirigu, A., & Duhamel, J. R. (2001). Motor and visual imagery as two complementary but neurally dissociable mental processes. Journal of Cognitive Neuroscience, 13(7), 910–919. doi:10.1162/089892901753165827.

    Article  PubMed  Google Scholar 

  • Sirigu, A., Grafman, J., & Sunderland, T. (1991). Multiple representations contribute to body knowledge processing. Brain, 114, 629–642. Retrieved from papers2://publication/uuid/9A1C10D4-40AD-4D1B-9675-E1746B3C2152.

  • Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin,. doi:10.1037/0033-2909.87.2.245.

    Google Scholar 

  • Stevens, J. A. (2005). Interference effects demonstrate distinct roles for visual and motor imagery during the mental representation of human action. Cognition, 95(3), 329–350. doi:10.1016/j.cognition.2004.02.008.

    Article  PubMed  Google Scholar 

  • Tessari, A., Canessa, N., Ukmar, M., & Rumiati, R. I. (2007). Neuropsychological evidence for a strategic control of multiple routes in imitation. Brain, 130(4), 1111–1126. doi:10.1093/brain/awm003.

    Article  PubMed  Google Scholar 

  • Tessari, A., & Rumiati, R. I. (2004). The strategic control of multiple routes in imitation of actions. Journal of Experimental Psychology: Human Perception and Performance, 30(6), 1107–1116. doi:10.1037/0096-1523.30.6.1107.

    PubMed  Google Scholar 

  • Tomasino, B., & Rumiati, R. I. (2004). Effects of strategies on mental rotation and hemispheric lateralization: Neuropsychological evidence. Journal of Cognitive Neuroscience, 16(5), 878–888. doi:10.1162/089892904970753.

    Article  PubMed  Google Scholar 

  • Tomasino, B., Toraldo, A., & Rumiati, R. I. (2003). Dissociation between the mental rotation of visual images and motor images in unilateral brain-damaged patients. Brain and Cognition, 51, 368–371.

    Article  PubMed  Google Scholar 

  • Vannuscorps, G., Pillon, A., & Andres, M. (2012). Effect of biomechanical constraints in the hand laterality judgment task: Where does it come from? Frontiers in Human Neuroscience, 6, 1–9. doi:10.3389/fnhum.2012.00299.

    Article  Google Scholar 

  • Vingerhoets, G., de Lange, F. P., Vandemaele, P., Deblaere, K., & Achten, E. (2002). Motor imagery in mental rotation: An fMRI study. NeuroImage, 17(3), 1623–1633. doi:10.1006/nimg.2002.1290.

    Article  PubMed  Google Scholar 

  • Viswanathan, S., Fritz, C., & Grafton, S. T. (2012). Telling the right hand from the left hand: Multisensory integration, not motor imagery, solves the problem. Psychological Science, 23(6), 598–607. doi:10.1177/0956797611429802.

    Article  PubMed  Google Scholar 

  • Wohlschlager, A., Gattis, M., & Bekkering, H. (2003). Action generation and action perception in imitation: An instance of the ideomotor principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1431), 501–515. doi:10.1098/rstb.2002.1257.

    Article  Google Scholar 

  • Wraga, M., Creem, S. H., & Proffitt, D. R. (1999). The influence of spatial reference frames on imagined object and viewer rotations. Acta Psychologica, 102, 247–264.

    Article  PubMed  Google Scholar 

  • Zacks, J., Mires, J., Tversky, B., & Hazeltine, E. (2000). Mental spatial transformations of objects and perspective. Sptaial Cognition and Computation, 2, 315–332.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from ANR (Agence Nationale pour la Recherche; Project Démences et Utilisation d’Outils/Dementia and Tool Use, N°ANR 2011 MALZ 006 03; D. Le Gall, F. Osiurak), and was performed within the framework of the LABEX CORTEX (ANR-11-LABX-0042) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007; F. Osiurak, J. Navarro) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lesourd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesourd, M., Navarro, J., Baumard, J. et al. Imitation and matching of meaningless gestures: distinct involvement from motor and visual imagery. Psychological Research 81, 525–537 (2017). https://doi.org/10.1007/s00426-016-0758-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-016-0758-1

Keywords

Navigation