Skip to main content
Log in

Exploring the mental number line: evidence from a dual-task paradigm

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

In a parity-judgment task smaller numbers are responded to faster with the left-hand key and vice versa for larger numbers (SNARC effect; Dehaene et al., in Journal of Experimental Psychology: General, 122, 371–396, 1993). We used the psychological refractory period paradigm involving a parity-judgment task and tone-discrimination task to address the question at which stage this effect arises. When the parity-judgment task is performed second, then we found equal SNARC effects for the short and the long SOA. According to the central bottleneck model, this indicates that the effect arises during the response-selection or execution stage. In Experiment 2 the parity-judgment task was performed first. The pattern of results indicates that the SNARC effect originates during the perceptual encoding or response-selection. Together, our results suggest that the SNARC effect originates while the response is selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. These words were used to ensure similar voice onset latencies for both responses

  2. We also conducted the experiment with six participants and manually recorded their vocal responses. The pattern of results (for both the tone-discrimination task and the parity-judgment task) obtained were the same as those reported below in which the vocal errors were included. Moreover, the vocal error rate was very low (1.35%). We conclude that the vocal error rates do not influence the main pattern of our findings

  3. We used a short SOA of 150 ms (in contrast to 50 ms in Experiment 1) as pre-experiments had indicated that a SOA of 50 ms made it very difficult for participants to discriminate which stimulus was presented first.

  4. The t value and SE refer to transformed error rates.

References

  • Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis. Cambridge: MIT Press.

    Google Scholar 

  • Brannon, E. M. (2005). What animals know about numbers. In: J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 85–107). New York: Psychology Press.

    Google Scholar 

  • Caessens, B., Hommel, B., Reynvoet, B., & van der Goten, K. (2004). Backward-compatibility effects with irrelevant stimulus-response overlap: The case of the SNARC effect. Journal of General Psychology, 13, 411–425.

    Google Scholar 

  • Campbell, J. I. D. (Ed.). (2005). Handbook of mathematical cognition. New York: Psychology Press.

  • De Jong, R. (1993). Multiple bottlenecks in overlapping task performance. Journal of Experimental Psychology: Human Perception and Performance, 19, 965–980.

    Article  PubMed  Google Scholar 

  • Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potential and the additive-factors method. Journal of Cognitive Neuroscience, 8, 47–68.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense. How the mind creates mathematics. New York: Oxford University Press.

    Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.

    Article  Google Scholar 

  • Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224.

    Article  PubMed  Google Scholar 

  • Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research, 65, 250–259.

    Article  PubMed  Google Scholar 

  • Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In: J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). New York: Psychology Press.

    Google Scholar 

  • Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC-effect. Mathematical Cognition, 2, 95–110.

    Article  Google Scholar 

  • Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 12, 415–423.

    Article  PubMed  Google Scholar 

  • Fischer, M. H. (2003). Spatial representation in number processing—evidence from a pointing task. Visual Cognition, 10, 493–508.

    Article  Google Scholar 

  • Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555–556.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51, 91–97.

    PubMed  Google Scholar 

  • Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Neuroscience, 4, 59–65.

    Article  Google Scholar 

  • Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87, B87–B95.

    Article  PubMed  Google Scholar 

  • Gevers, W., Ratinckx, E., De Baene, W., & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture: Evidence from the lateralized readiness potential. Experimental Psychology, 53, 58–68.

    PubMed  Google Scholar 

  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448.

    Article  PubMed  Google Scholar 

  • Keus, I. M., & Schwarz, W. (2005). Searching for the functional locus of the SNARC effect: Evidence for a response-related origin. Memory & Cognition, 33, 681–695.

    Google Scholar 

  • Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24, 48–56.

    Article  PubMed  Google Scholar 

  • Lorch, R. F., Jr., & Meyers, J. L. (1990). Regression analyses of repeated measures data in cognition research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 149–157.

    Article  PubMed  Google Scholar 

  • Mapelli, D., Rusconi, E., & Umiltà, C. (2003). The SNARC effect: An instance of the Simon effect? Cognition, 88, B1–B10.

    Article  PubMed  Google Scholar 

  • McCann, R. S., & Johnston, J. C. (1992). Locus of the single-channel bottleneck in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 18, 471–484.

    Article  Google Scholar 

  • McCann, R. S., Remington, R. W., & Van Selst, M. (2000). A dual-task investigation of automaticity in visual word processing. Journal of Experimental Psychology: Human Perception and Performance, 26, 1352–1370.

    Article  PubMed  Google Scholar 

  • Miller, J., & Reynolds, A. (2003). The locus of redundant-targets and nontargets effects: Evidence from the Psychological Refractory Period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 29, 1126–1142.

    Article  PubMed  Google Scholar 

  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 1519–1520.

    Article  PubMed  Google Scholar 

  • Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC effect and the MARC (linguistic markedness of response codes) effect. The Quarterly Journal of Experimental Psychology, 57A, 835–863.

    PubMed  Google Scholar 

  • Nuerk, H.-C., Wood, G., & Willmes, K. (2005). The universal SNARC effect. The association between number magnitude and space is amodal. Experimental Psychology, 52, 187–194.

    PubMed  Google Scholar 

  • Oriet, C., Tombu, M., & Jolicœur, P. (2005). Symbolic distance affects two processing loci in the number comparison task. Memory & Cognition, 33, 913–926.

    Google Scholar 

  • Otten, L. J., Sudevan, P., Logan, G. D., & Coles, M. G. H. (1996). Magnitude versus parity in numerical judgments: Event-related brain potentials implicate response conflict as the source of interference. Acta Psychologica, 94, 21–40.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1984). Processing stages in overlapping tasks: Evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10, 358–377.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1993a). Doing two things at the same time. American Scientist, 81, 48–55.

    Google Scholar 

  • Pashler, H. (1993b). Dual-task interference and elementary mental mechanisms. In D. Meyer & S. Kornblum (Eds.), Attention and performance XIV (pp. 245–264). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Pashler, H. (1994). Dual task interference in simple tasks: Eata and theory. Psychological Bulletin, 116, 220–244.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1998). The psychology of attention. London: The MIT Press.

    Google Scholar 

  • Pashler, H., & Johnston, J. C. (1998). Attentional limitations in dual-task performance. In: H. Pashler (Ed.), Attention (pp.155–189). Hove: Psychology Press.

    Google Scholar 

  • Pinel, P., Dehaene, S., Rivière, D., & LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage, 14, 1013–1026.

    Article  PubMed  Google Scholar 

  • Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274–278.

    Article  Google Scholar 

  • Schwarz, W., & Ischebeck, A. (2001). On the interpretation of response time vs. onset asynchrony functions: Application to dual-task and precue-utilization paradigms. Journal of Mathematical Psychology, 45, 452–479.

    Article  PubMed  Google Scholar 

  • Schwarz, W., & Ischebeck, A. (2003). On the relative-speed account of number-size interference effects in comparative judgments of numerals. Journal of Experimental Psychology: Human Perception and Performance, 29, 507–522.

    Article  PubMed  Google Scholar 

  • Schwarz, W., & Keus, I. M. (2004). Moving along the mental number line: Comparing SNARC effects with saccadic and manual response. Perception & Psychophysics, 66, 651–664.

    Google Scholar 

  • Schwarz, W. & Müller, D. (2006). Spatial associations in number-related tasks: A comparison of manual and pedal responses. Experimental Psychology, 53, 4–15.

    PubMed  Google Scholar 

  • Schweickert, R. (1978). A critical path generalization of the additive factor method: Analysis of a Stroop task. Journal of Mathematical Psychology, 18, 105–139.

    Article  Google Scholar 

  • Sigman, M., & Dehaene, S. (2005). Parsing a cognitive task: A characterization of the Mind’s bottleneck. PLoS Biology, 3, e37.

    Article  PubMed  Google Scholar 

  • Smith, M. C. (1969). The effect of varying information on the psychological refractory period. Acta Psychologica, 30, 220–231.

    Article  Google Scholar 

  • Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. In: W. G. Kloster (Ed.), Attention and performance II (pp. 276–315). Amsterdam: North Holland.

    Google Scholar 

  • Telford, C. W. (1931). The refractory phase of voluntary and associative responses. Journal of Experimental Psychology, 14, 1–36.

    Article  Google Scholar 

  • Tlauka, M. (2002). The processing of numbers in choice-reaction tasks. Australian Journal of Psychology, 54, 94–98.

    Article  Google Scholar 

  • Tombu, M., & Jolicœr, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29, 3–18.

    Article  PubMed  Google Scholar 

  • Tombu, M., & Jolicœr, P. (2005). Testing the predictions of the central capacity sharing model. Journal of Experimental Psychology: Human Perception and Performance, 31, 790–820.

    Article  PubMed  Google Scholar 

  • Zorzi, M., Priftis, K., & Umiltà, C. (2002). Neglect disrupts the mental number line. Nature, 417, 138–139.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, D., Schwarz, W. Exploring the mental number line: evidence from a dual-task paradigm. Psychological Research 71, 598–613 (2007). https://doi.org/10.1007/s00426-006-0070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-006-0070-6

Keywords

Navigation