Skip to main content
Log in

A trait stacking system via intra-genomic homologous recombination

  • Emerging Technologies
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A gene targeting method has been developed, which allows the conversion of ‘breeding stacks’, containing unlinked transgenes into a ‘molecular stack’ and thereby circumventing the breeding challenges associated with transgene segregation.

A gene targeting method has been developed for converting two unlinked trait loci into a single locus transgene stack. The method utilizes intra-genomic homologous recombination (IGHR) between stably integrated target and donor loci which share sequence homology and nuclease cleavage sites whereby the donor contains a promoterless herbicide resistance transgene. Upon crossing with a zinc finger nuclease (ZFN)-expressing plant, double-strand breaks (DSB) are created in both the stably integrated target and donor loci. DSBs flanking the donor locus result in intra-genomic mobilization of a promoterless selectable marker-containing donor sequence, which can be utilized as a template for homology-directed repair of a concomitant DSB at the target locus resulting in a functional selectable marker via nuclease-mediated cassette exchange (NMCE). The method was successfully demonstrated in maize using a glyphosate tolerance gene as a donor whereby up to 3.3 % of the resulting progeny embryos cultured on selection medium regenerated plants with the donor sequence integrated into the target locus. The process could be extended to multiple cycles of trait stacking by virtue of a unique intron sequence homology for NMCE between the target and the donor loci. This is the first report that describes NMCE via IGHR, thereby enabling trait stacking using conventional crossing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, Corbin DR, Miles RR, Arnold NL, Strange TL, Simpson MA, Cao Z, Carroll C, Pawelczak KS, Blue R, West K, Rowland LM, Perkins D, Samuel P, Dewes CM, Shen L, Sriram S, Evans SL, Rebar EJ, Zhang L, Gregory PD, Urnov FD, Webb SR, Petolino JF (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11(9):1126–1134. doi:10.1111/pbi.12107

    Article  CAS  PubMed  Google Scholar 

  • Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1(5):2320–2325. doi:10.1038/nprot.2006.384

    Article  CAS  PubMed  Google Scholar 

  • Ayar A, Wehrkamp-Richter S, Laffaire JB, Le Goff S, Levy J, Chaignon S, Salmi H, Lepicard A, Sallaud C, Gallego ME, White CI, Paul W (2013) Gene targeting in maize by somatic ectopic recombination. Plant Biotechnol J 11(3):305–314. doi:10.1111/Pbi.12014

    Article  CAS  PubMed  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. doi:10.1534/genetics.110.120717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M, Osakabe K, Ichikawa H, Toki S (2006) Molecular characterization of true and ectopic gene targeting events at the acetolactate synthase gene in Arabidopsis. Plant Cell Physiol 47(3):372–379. doi:10.1093/pcp/pcj003

    Article  CAS  PubMed  Google Scholar 

  • Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31(11):2952–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Even-Faitelson L, Samach A, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA (2011) Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. Plant J 68(5):929–937. doi:10.1111/j.1365-313X.2011.04741.x

    Article  CAS  PubMed  Google Scholar 

  • Fauser F, Roth N, Pacher M, Ilg G, Sanchez-Fernandez R, Biesgen C, Puchta H (2012) In planta gene targeting. Proc Natl Acad Sci USA 109(19):7535–7540. doi:10.1073/pnas.1202191109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao HR, Smith J, Yang MZ, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D, Lyznik LA (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61(1):176–187. doi:10.1111/j.1365-313X.2009.04041.x

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87(1–2):99–110. doi:10.1007/s11103-014-0263-0

    Article  CAS  PubMed  Google Scholar 

  • Hallauer AR, Lamkey KR, White PR (1997) Registration of five inbred lines of maize: B102, B103, B104, B105, and B106. Crop Sci 37(4):1405–1406

    Article  Google Scholar 

  • Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28(6):671–677 (pii 1183)

    Article  CAS  PubMed  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Fladung M (2001) Controlling transgene integration in plants. Trends Plant Sci 6(4):155–159 (pii S1360-1385(01)01890-8)

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, AlAbed D, Whitteck JT, Chen W, Bennett S, Asberry A, Wang X, DeSloover D, Rangasamy M, Wright TR, Gupta M (2015a) A combinatorial bidirectional and bicistronic approach for coordinated multi-gene expression in corn. Plant Mol Biol 87(4–5):341–353. doi:10.1007/s11103-015-0281-6

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, AlAbed D, Worden A, Novak S, Wu H, Ausmus C, Beck M, Robinson H, Minnicks T, Hemingway D, Lee R, Skaggs N, Wang L, Marri P, Gupta M (2015b) A modular gene targeting system for sequential transgene stacking in plants. J Biotechnol 207:12–20. doi:10.1016/j.jbiotec.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Barone P, Smith M (2016) Gene targeting and transgene stacking using intra genomic homologous recombination in plants. Plant Methods 12:11. doi:10.1186/s13007-016-0111-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genom 41(2):63–68. doi:10.1016/j.jgg.2013.12.001

    Article  CAS  Google Scholar 

  • Lira JM, Cicchillo R, Yerkes CN, Robinson AE (2013) Glyphosate resistant plants and associated methods. US20130219552A1

  • Miller PD (2013) Method for improved transformation using agrobacterium. US Patent 0157369 A1

  • Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 104(9):3055–3060. doi:10.1073/pnas.0611478104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller D, Pope R (2009) Corn field guide. Iowa State University, Ames

    Google Scholar 

  • Murray MG, Cuellar RE, Thompson WF (1978) DNA sequence organization in the pea genome. Biochemistry 17(26):5781–5790

    Article  CAS  PubMed  Google Scholar 

  • Petolino JF, Kumar S (2015) Transgenic trait deployment using designed nucleases. Plant Biotechnol J. doi:10.1111/pbi.12457

    PubMed  Google Scholar 

  • Que Q, Chilton MD, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1(4):220–229. doi:10.4161/gmcr.1.4.13439

    Article  PubMed  Google Scholar 

  • Rong YS, Golic KG (2000) Gene targeting by homologous recombination in Drosophila. Science 288(5473):2013–2018 (pii 8589)

    Article  CAS  PubMed  Google Scholar 

  • Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80(6):1139–1150. doi:10.1111/tpj.12704

    Article  CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng XD, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441. doi:10.1038/Nature07992

    Article  CAS  PubMed  Google Scholar 

  • Siebert MW, Nolting SP, Hendrix W, Dhavala S, Craig C, Leonard BR, Stewart SD, All J, Musser FR, Buntin GD, Samuel L (2012) Evaluation of corn hybrids expressing Cry1F, Cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against Southern United States insect pests. J Econ Entomol 105(5):1825–1834. doi:10.1603/Ec12155

    Article  CAS  PubMed  Google Scholar 

  • Storer NP, Thompson GD, Head GP (2012) Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops. GM Crops Food 3(3):154–162. doi:10.4161/gmcr.20945

    Article  PubMed  Google Scholar 

  • Wehrmann A, Van Vliet A, Opsomer C, Botterman J, Schulz A (1996) The similarities of bar and pat gene products make them equally applicable for plant engineers. Nat Biotechnol 14(10):1274–1278. doi:10.1038/nbt1096-1274

    Article  CAS  PubMed  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338. doi:10.1038/nature10886

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107(26):12028–12033. doi:10.1073/pnas.0914991107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Diaa AlAbed, Stephen Foulk, Huixia Wu, Carla Ausmus, Margaret Beck, Heather Robinson, Tatyana Minnicks, and Daren Hemingway for plant transformation and regeneration work, Jamie Torrence for greenhouse support, and Nicole Skaggs for molecular analysis. The authors would also like to thank Manju Gupta, Michelle Smith, and Rodrigo Sarria for their support. We also thank anonymous reviewers for their critical and constructive review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Competing financial interests

The authors in this publication certify that they are current or former employees of Dow AgroSciences LLC, a subsidiary of The Dow Chemical Company. As employees, they authors may have some company stock (The Dow Chemical Company), but no other personal financial interest in the subject matter of the materials discussed in this manuscript.

Additional information

S. Kumar and A. Worden contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Worden, A., Novak, S. et al. A trait stacking system via intra-genomic homologous recombination. Planta 244, 1157–1166 (2016). https://doi.org/10.1007/s00425-016-2595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2595-2

Keywords

Navigation