Skip to main content
Log in

Generation of reactive oxygen species in thylakoids from senescing flag leaves of the barley varieties Lomerit and Carina

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

During senescence, production of reactive oxygen species increased in thylakoids. In two barley varieties, no difference in superoxide production was observed while singlet oxygen production increased only in one variety.

Abstract

During senescence, chlorophyll content decreased and photosynthetic electron transport was inhibited as shown for flag leaves collected from barley varieties Lomerit and Carina grown in the field. Spin trapping electron paramagnetic resonance (EPR) was used to investigate the production of reactive oxygen species in thylakoid membranes during senescence. EPR measurements were performed with specific spin traps to discriminate between singlet oxygen on one hand and reactive oxygen intermediates on the other hand. The results show that the generation of reactive oxygen intermediates increases in both varieties during senescence. Singlet oxygen increased only in the variety cv. Lomerit while it remained constant at a low level in the variety cv. Carina. Measurements in the presence of inhibitors of photosystem II and of the cytochrome b6f complex revealed that in senescing leaves reduction of oxygen at the acceptor side of photosystem I was the major, but not the only source of superoxide anions. This study shows that during senescence the production of individual reactive oxygen species varies in different barley varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethyl urea

DNP-INT:

2-Iodo-2′,4′,4′-trinitro-3-methyl-6-isopropyl diphenyl ether

EPR:

Electron paramagnetic resonance

LHC:

Light harvesting complex

PS:

Photosystem

4-POBN:

α-(4-Pyridyl-1-oxide)-N-tert-butylnitrone

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TEMPD-HCl:

2,2,6,6-Tetramethyl-4-piperidone hydrochloride

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arato A, Bondarava N, Krieger-Liszkay A (2004) Production of reactive oxygen species in chloride- and calcium-depleted photosystem II and their involvement in photoinhibition. Biochim Biophys Acta Bioenerg 1608:171–180

    Article  CAS  Google Scholar 

  • Asada K, Kiso K, Yoshika WK (1974) Univalent reduction of molecular-oxygen by spinach-chloroplasts on illumination. J Biol Chem 249:2175–2181

    CAS  PubMed  Google Scholar 

  • Baniulis D, Hasan SS, Stofleth JT, Cramer WA (2013) Mechanism of Enhanced superoxide production in the cytochrome b(6)f complex of oxygenic photosyn. Biochem 52:8975–8983

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver C (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Casano LM, Martin M, Sabater B (1994) Sensitivity of superoxide dismutase transcript levels and activities to oxidative stress is lower in mature-senescent than in young barley leaves. Plant Physiol 106:1033–1039

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria—central role of complex III. J Biol Chem 278:36027–36031

    Article  CAS  PubMed  Google Scholar 

  • Coste S, Baraloto C, Leroy C, Marcon E, Renaud A, Richardson AD, Roggy JC, Schimann H, Uddling J, Hérault B (2010) Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Ann For Sci 67:607. doi:10.1051/forest/2010020

    Article  Google Scholar 

  • del Rio LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, López-Huertas E, Hernández JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhindsa RS, Plumbdhindsa P, Thorpe TA (1981) Leaf senescence—correlated with increased levels of membrane-permeability and lipid-peroxidation, and decreased levels of superoxide-dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumbdhindsa PL, Reid DM (1982) Leaf senescence and lipid peroxidation—effects of some phytohormones, and scavengers of free-radicals and singlet oxygen. Physiol Plant 56:453–457

    Article  CAS  Google Scholar 

  • Edge R, Truscott T (2010) Properties of carotenoid radicals and excited states and their potential role in biological systems. In: Landrum J (ed) Carotenoids: physical, chemical, and biological functions and properties. CRC Press, Boca Raton, pp 283–307

    Google Scholar 

  • Finkelstein E, Rosen GM, Raukman EJ (1982) Production of hydroxyl radicals by decomposition of superoxide spin trapped adducts. Mol Pharmacol 21:262–265

    CAS  PubMed  Google Scholar 

  • Fischer BB, Hideg E, Krieger-Liszkay A (2013) Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antiox Redox Signaling 18:2145–2162

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2013) Redox signaling in plants. Antiox Redox Signal 18:2087–2090

    Article  CAS  Google Scholar 

  • Frejaville C, Karoui H, Tuccio B, Lemoigne F, Culcasi M, Pietri S, Lausicella R, Tordo P (1995) 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide—a neW efficient phosphorylated Nitrone for the in vitro and in vivo spin-trapping of oxygen-centered radicals. J Med Chem 38:258–265

    Article  CAS  PubMed  Google Scholar 

  • Gollmer A, Arnbjerg J, Blaikie FH, Pedersen BW, Breitenbach T, Daasbjerg K, Glasius M, Ogilby PR (2011) Singlet oxygen sensor green. Photochem Photobiol 87:671–6799. doi:10.1111/j.1751-1097.2011.00900.x

    Article  CAS  PubMed  Google Scholar 

  • Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82:603–622

    Article  CAS  PubMed  Google Scholar 

  • Heyno E, Gross CM, Laureau C, Culcasi M, Pietri S, Krieger-Liszkay A (2009) Plastid alternative oxidase (PTOX) promotes oxidative stress when overexpressed in tobacco. J Biol Chem 284(45):31174–31180. doi:10.1074/jbc.M109.021667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hideg E, Deák Z, Hakala-Yatkin M, Karonen M, Rutherford AW, Tyystjärvi E, Vass I, Krieger-Liszkay A (2011) Pure forms of the singlet oxygen sensors TEMP and TEMPD do not inhibit Photosystem II. Biochim Biophys Acta 1807:1658–1661

    Article  CAS  PubMed  Google Scholar 

  • Hilditch P, Thomas H, Rogers LJ (1986) 2 Processes for the breakdown of the qb protein of chloroplasts. FEBS Lett 208:313–316

    Article  CAS  Google Scholar 

  • Hopkins M, Taylor C, Liu ZD, Ma FS, McNamara L, Wang TW, Thompson JE (2007) Regulation and execution of molecular disassembly and catabolism during senescence. New Phytol 175:201–214

    Article  CAS  PubMed  Google Scholar 

  • Humbeck K, Quast S, Krupinska K (1996) Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ 19:337–344

    Article  CAS  Google Scholar 

  • Juvany M, Müller M, Munné-Bosch S (2013) Photo-oxidative stress in emerging and senescing leaves: a mirror image? J Exp Bot 64:3087–3098

    Article  CAS  PubMed  Google Scholar 

  • Kar M, Feierabend J (1984) Metabolism of activated oxygen in detached wheat and rye leaves and its relevance to the initiation of senescence. Planta 160:385–391

    Article  CAS  PubMed  Google Scholar 

  • Karpinski S, Szechynska-Hebda M, Wituszynska W, Burdiak P (2013) Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant Cell Environ 36:736–744

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Apel K (2013) Singlet oxygen-mediated signaling in plants: moving from flu to wild type reveals an increasing complexity. Photosyn Res 116:455–464

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Meskauskiene R, Zhang S, Lee KP, Lakshmanan Ashok M, Blajecka K, Herrfurth C, Feussner I, Apel K (2012) Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. Plant Cell 7:3026–3039

    Article  Google Scholar 

  • Krupinska K, Humbeck K (2004) Photosynthesis and chloroplast breakdown. In: Noóden LD (ed) Plant cell death processes. Elsevier Academic Press, San Diego, pp 169–188

    Chapter  Google Scholar 

  • Krupinska K, Mulisch M, Hollmann J, Tokarz K, Zschiesche W, Kage H, Humbeck K, Bilger W (2012) An alternative strategy of dismantling of the chloroplasts during leaf senescence observed in a high-yield variety of barley. Physiol Plant 144:189–200

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Herouart D, VanMontagu M, Inze D (1997) Differential expression of CuZn- and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments. Plant Cell Physiol 38:463–470

    Article  CAS  PubMed  Google Scholar 

  • Li ZR, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and Responding to Excess Light. Ann Rev Plant Biol 60:239–260

    Article  CAS  Google Scholar 

  • McRae DG, Thompson JE (1983) Senescence-dependent changes in superoxide anion production by illuminated chloroplasts from bean-leaves. Planta 158:185–193

    Article  CAS  PubMed  Google Scholar 

  • Mehta RA, Fawcett TW, Porath D, Mattoo AK (1992) Oxidative stress causes rapid membrane translocation and in vivo degradation of Ribulose-1,5-bisphosphate carboxylase oxygenase. J Biol Chem 267:2810–2816

    CAS  PubMed  Google Scholar 

  • Miersch I, Heise J, Zelmer I, Humbeck K (2000) Differential degradation of the photosynthetic apparatus during leaf senescence in barley (Hordeum vulgare L.). Plant Biol 2:618–623

    Article  Google Scholar 

  • Mubarakshina MM, Ivanov BN (2010) The production and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes. Physiol Plant 140:103–110

    Article  CAS  PubMed  Google Scholar 

  • Mulisch M, Krupinska K (2013) Ultrastructural analyses of senescence associated dismantling of chloroplasts revisited. In: Biswal B, Krupinska K, Biswal UC (eds) Plastid development in leaves during growth and senescence. Springer, Dordrecht, pp 529–550

    Google Scholar 

  • Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol 154:521–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Navabpour S, Morris K, Allen R, Harrison E, A-H-Mackerness S, Buchanan-Wollaston V (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292

    Article  CAS  PubMed  Google Scholar 

  • Ohe M, Rapolu M, Mieda T, Miyagawa Y, Yabuta Y, Yoshimura K, Shigeoka S (2005) Decline in leaf photooxidative-stress tolerance with age in tobacco. Plant Sci 168:1487–1493

    Article  CAS  Google Scholar 

  • Pastori GM, del Rio LA (1997) Natural senescence of pea leaves—an activated oxygen-mediated function for peroxisomes. Plant Physiol 113:411–418

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pintó-Marijuan M, Munné-Bosch S (2014) Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence/advantages and limitations. J Exp Bot 65:3845–3857

    Article  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Pospisil P (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim Biophys Acta 1817:218–231

    Article  CAS  PubMed  Google Scholar 

  • Pospisil P, Arato A, Krieger-Liszkay A, Rutherford AW (2004) Hydroxyl radical generation by photosystem II. Biochem 43:6783–6792

    Article  CAS  Google Scholar 

  • Prochazkova D, Wilhelmova N (2007) Leaf senescence and activities of the antioxidant enzymes. Biol Plant 51:401–406

    Article  CAS  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  • Ramos CL, Pou S, Britigan BE, Cohen MS, Rosen GM (1992) Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem 267:8307–8312

    CAS  PubMed  Google Scholar 

  • Rinalducci S, Pedersen JZ, Zolla L (2004) Formation of radicals from singlet oxygen produced during photoinhibition of isolated light-harvesting proteins of photosystem II. Biochim Biophys Acta 1608:63–73

    Article  CAS  PubMed  Google Scholar 

  • Rosenwasser S, Rot I, Sollner E, Meyer AJ, Smith Y, Leviatan N, Fluhr R, Friedman H (2011) Organelles contribute differentially to reactive oxygen species-related events during extended darkness. Plant Physiol 156:185–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rutherford AW, Krieger-Liszkay A (2001) Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 26:648–653

    Article  CAS  PubMed  Google Scholar 

  • Sabater B, Martín M (2013) Chloroplast control of leaf senescence. In: Biswal B, Krupinska K, Biswal UC (eds) Plastid development in leaves during growth and senescence. Springer, Dordrecht, pp 529–550

    Chapter  Google Scholar 

  • Schröder WP, Akerlund HE (1986) H2O2 accessibility to the photosystem-II donor side in protein-depleted inside-out thylakoids measured as flash-induced oxygen production. Biochim Biophys Acta 848:359–363

    Article  Google Scholar 

  • Tang YL, Wen XG, Lu CM (2005) Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Physiol Biochem 43:193–201

    Article  CAS  PubMed  Google Scholar 

  • Vanacker H, Sandalio LM, Jimenez A, Palma JM, Corpas FJ, Meseguer V, Gomez M, Sevilla F, Leterrier M, Foyer CH, del Rio LA (2006) Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. J Exp Bot 57:1735–1745

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Feilke K, Krieger-Liszkay A, Beyer P (2014) Functional and molecular characterization of plastid terminal oxidase from rice (Oryza sativa). Biochim Biophys Acta 1837:1284–1292

    Article  CAS  PubMed  Google Scholar 

  • Zapata JM, Guéra A, Esteban-Carrasco A, Martín M, Sabater B (2005) Chloroplasts regulate leaf senescence: delayed senescence in transgenic ndhF-defective tobacco. Cell Death Differ 12:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515–534

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rüdiger Stroeh (farm manager of Hohenschulen, CAU, Kiel, Germany) and his co-workers for preparation of field plots. We also thank the early stage researchers Wera Kucharewicz and Aditi Das of the EU Marie Curie project “Croplife” (ITN: PITN-GA-2010-264394) for collecting samples and Luca Boschian for preparation of chloroplasts in 2013. DEPMPO was a kind gift of S. Pietri, Univeristé Aix-Marseille, France. This work was supported by the German Research Foundation (DFG) for financial support (KR1350/13-1, KR1350/14-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Krieger-Liszkay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krieger-Liszkay, A., Trösch, M. & Krupinska, K. Generation of reactive oxygen species in thylakoids from senescing flag leaves of the barley varieties Lomerit and Carina. Planta 241, 1497–1508 (2015). https://doi.org/10.1007/s00425-015-2274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2274-8

Keywords

Navigation