Skip to main content
Log in

Reduced expression of starch branching enzyme IIa and IIb in maize endosperm by RNAi constructs greatly increases the amylose content in kernel with nearly normal morphology

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

RNAi technology was applied to suppress the expression of starch branching enzyme IIa and IIb and to increase amylose content in maize endosperm, and stably inherited high-amylose maize lines were obtained.

Amylose is an important material for industries and in the human diet. Maize varieties with endosperm amylose content (AC) of greater than 50 % are termed amylomaize, and possess high industrial application value. The high-amylose trait is controlled by multi-enzyme reaction and intricate gene–environment interaction. Starch branching enzymes are key factors for regulating the branching profiles of starches. In this paper, we report the successful application of RNAi technology for improving amylose content in maize endosperm through the suppression of the ZmSBEIIa and ZmSBEIIb genes by hairpin SBEIIRNAi constructs. These SBEIIRNAi transgenes led to the down-regulation of ZmSBEII expression and SBE activity to various degrees and altered the morphology of starch granules. Transgenic maize lines with AC of up to 55.89 % were produced, which avoided the significant decreases in starch content and grain yield that occur in high-amylose ae mutant. Novel maize lines with high AC offer potential benefits for high-amylose maize breeding. A comparison of gene silencing efficiency among transgenic lines containing different hpSBEIIRNA constructs demonstrated that (1) it was more efficient to use both ZmSBEIIa and ZmSBEIIb specific regions than to use the conserved domain as the inverted repeat arms; (2) the endosperm-specific promoter of the 27-kDa γ-zein provided more efficient inhibition than the CaMV 35S promoter; and (3) inclusion of the catalase intron in the hpSBEIIRNA constructs provided a better silencing effect than the chalcone synthase intron in the hpRNA construct design for suppression of the SBEII subfamily in endosperm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AC:

Amylose content

ae:

Amylose-extender

AGPase:

ADP-glucose pyrophosphorylase

CTAB:

Cetyltrimethylammonium bromide

DP:

Degree of polymerization

DAP:

Days after pollination

GBSS:

Granule-bound starch synthetase

RNAi:

RNA interference

SBE:

Starch branching enzymes

DBE:

Starch debranching enzymes

SS:

Starch synthetases

WT:

Wild type

References

  • Béclin C, Boutet S, Waterhouse P, Vaucheret H (2002) A branched pathway for transgene-induced RNA silencing in plants. Curr Biol 12:684–688

    Article  PubMed  Google Scholar 

  • Blauth SL, Yao Y, Klucinec JD, Shannon JC, Thompson DB, Guiltinan MJ (2001) Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiol 125:1396–1405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blauth SL, Kim K-N, Klucinec J, Shannon JC, Thompson D, Guiltinan M (2002) Identification of Mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea mays L. Plant Mol Biol 48:287–297

    Article  CAS  PubMed  Google Scholar 

  • Boyer CD, Preiss J (1981) Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiol 67:1141–1145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burton RA, Bewley JD, Smith AM, Bhattacharyya MK, Tatge H, Ring S, Bull V, Hamilton W, Martin C (1995) Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J 7:3–15

    Article  CAS  PubMed  Google Scholar 

  • Butardo VM, Fitzgerald MA, Bird AR, Gidley MJ, Flanagan BM, Larroque O, Resurreccion AP, Laidlaw HK, Jobling SA, Morell MK (2011) Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA-and hairpin RNA-mediated RNA silencing. J Exp Bot 62:4927–4941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chuang C-F, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Nat Acad Sci USA 97:4985–4990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Denyer K, Johnson P, Zeeman S, Smith AM (2001) The control of amylose synthesis. J Plant Physiol 158:479–487

    Article  CAS  Google Scholar 

  • Fisher DK, Gao M, Kim K-N, Boyer CD, Guiltinan MJ (1996) Allelic analysis of the maize amylose-extender locus suggests that independent genes encode starch-branching enzymes IIa and IIb. Plant Physiol 110:611–619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman RB, Deboer ED, Delgado GA, Furcsik SL, Qvyjt F, Tenbarge FL (1999) Targeting of an appropriate amylose type starch for specific product applications. Macromol Symp 140:81–91

    Article  CAS  Google Scholar 

  • Gao M, Fisher DK, Kim K-N, Shannon JC, Guiltinan MJ (1996) Evolutionary conservation and expression patterns of maize starch branching enzyme I and IIb genes suggests isoform specialization. Plant Mol Biol 30:1223–1232

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Fisher DK, Kim K-N, Shannon JC, Guiltinan MJ (1997) Independent genetic control of maize starch-branching enzymes IIa and IIb: isolation and characterization of a Sbe2a cDNA. Plant Physiol 114:69–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garwood DL, Shannon J, Creech R (1976) Starches of endosperms possessing different alleles at the amylose-extender locus in Zea mays L. Cereal Chem 53:355–364

    CAS  Google Scholar 

  • Guan H, Preiss J (1993) Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol 102:1269–1273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guan H, Li P, Imparl-Radosevich J, Preiss J, Keeling P (1997) Comparing the properties of Escherichia coli branching enzyme and maize branching enzyme. Arch Biochem Biophys 342:92–98

    Article  CAS  PubMed  Google Scholar 

  • Guan S, Wang P, Liu H, Liu G, Ma Y, Zhao L (2011) Production of high-amylose maize lines using RNA interference in sbe2a. Afr J Biotechnol 10:15229–15237

    Article  CAS  Google Scholar 

  • Guo Z, Zhang J, Wang D, Chen Z (2008) Using RNAi technology to produce high-amylose potato plants. Sci Agric Sin 41:494–501

    CAS  Google Scholar 

  • Hedman KD, Boyer CD (1983) Allelic studies of the amylose-extender locus of Zea mays L.: levels of the starch branching enzymes. Biochem Genet 21:1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Heilersig H, Loonen A, Bergervoet M, Wolters A, Visser R (2006) Post-transcriptional gene silencing of GBSSI in potato: effects of size and sequence of the inverted repeats. Plant Mol Biol 60:647–662

    Article  CAS  PubMed  Google Scholar 

  • Hennen-Bierwagen TA, Liu F, Marsh RS, Kim S, Gan Q, Tetlow IJ, Emes MJ, James MG, Myers AM (2008) Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol 146:1892–1908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirai S, Kodama H (2008) RNAi vectors for manipulation of gene expression in higher plants. Open Plant Sci J 2:21–30

    Article  CAS  Google Scholar 

  • Hofvander P, Andersson M, Larsson CT, Larsson H (2004) Field performance and starch characteristics of high-amylose potatoes obtained by antisense gene targeting of two branching enzymes. Plant Biotechnol J 2:311–320

    Article  CAS  PubMed  Google Scholar 

  • Jeon J-S, Ryoo N, Hahn T-R, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48:383–392

    Article  CAS  PubMed  Google Scholar 

  • Jobling SA, Schwall GP, Westcott RJ, Sidebottom CM, Debet M, Gidley MJ, Jeffcoat R, Safford R (1999) A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE A. Plant J 18:163–171

    Article  CAS  PubMed  Google Scholar 

  • Krogars K, Heinämäki J, Karjalainen M, Niskanen A, Leskelä M, Yliruusi J (2003) Enhanced stability of rubbery amylose-rich maize starch films plasticized with a combination of sorbitol and glycerol. Int J Pharm 251:205–208

    Article  CAS  PubMed  Google Scholar 

  • Kuriki T, Stewart DC, Preiss J (1997) Construction of chimeric enzymes out of maize endosperm branching enzymes I and II: activity and properties. J Biol Chem 272:28999–29004

    Article  CAS  PubMed  Google Scholar 

  • Li L, Jiang H, Campbell M, Blanco M, J-l Jane (2008) Characterization of maize amylose-extender (ae) mutant starches. Part I: relationship between resistant starch contents and molecular structures. Carbohydr Polym 74:396–404

    Article  CAS  Google Scholar 

  • Li N, Zhang S, Zhao Y, Li B, Zhang J (2011) Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 233:241–250

    Article  CAS  PubMed  Google Scholar 

  • Lourdin D, Valle GD, Colonna P (1995) Influence of amylose content on starch films and foams. Carbohydr Polym 27:261–270

    Article  CAS  Google Scholar 

  • Martin C, Smith AM (1995) Starch biosynthesis. Plant Cell 7:971–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matveev YI, Van Soest J, Nieman C, Wasserman L, Protserov V, Ezernitskaja M, Yuryev V (2001) The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydr Polym 44:151–160

    Article  CAS  Google Scholar 

  • Mizuno K, Kimura K, Arai Y, Kawasaki T, Shimada H, Baba T (1992) Starch branching enzymes from immature rice seeds. J Biochem 112:643–651

    CAS  PubMed  Google Scholar 

  • Moore CW, Creech RG (1972) Genetic fine structure analysis of the amylose-extender locus in Zea mays L. Genetics 70:611–619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morell MK, Blennow A, Kosar-Hashemi B, Samuel MS (1997) Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiol 113:201–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson O, Pan D (1995) Starch synthesis in maize endosperms. Annu Rev Plant Biol 46:475–496

    Article  CAS  Google Scholar 

  • Poulsen P, Kreiberg JD (1993) Starch branching enzyme cDNA from Solanum tuberosum. Plant Physiol 102:1053–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Regina A, Kosar-Hashemi B, Li Z, Pedler A, Mukai Y, Yamamoto M, Gale K, Sharp PJ, Morell MK, Rahman S (2005) Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. Planta 222:899–909

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Nat Acad Sci USA 103:3546–3551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Regina A, Kosar-Hashemi B, Ling S, Li Z, Rahman S, Morell M (2010) Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J Exp Bot 61:1469–1482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saurabh S, Vidyarthi AS, Prasad D (2014) RNA interference: concept to reality in crop improvement. Planta 239:543–564

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MA, Herman EM (2008) Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes. Mol Plant 1:910–924

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MA, Barbazuk WB, Sandford M, May G, Song Z, Zhou W, Nikolau BJ, Herman EM (2011) Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome. Plant Physiol 156:330–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwall GP, Safford R, Westcott RJ, Jeffcoat R, Tayal A, Shi Y-C, Gidley MJ, Jobling SA (2000) Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol 18:551–554

    Article  CAS  PubMed  Google Scholar 

  • Smith AM (1990) Evidence that the “waxy” protein of pea (Pisum sativum L.) is not the major starch-granule-bound starch synthase. Planta 182:599–604

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Sathish P, Ahlandsberg S, Jansson C (1998) The two genes encoding starch-branching enzymes IIa and IIb are differentially expressed in barley. Plant Physiol 118:37–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda Y, Guan H, Preiss J (1993) Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydr Res 240:253–263

    Article  CAS  Google Scholar 

  • Wang Y, White P, Pollak L, Jane J (1993) Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem 70:171–179

    CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Yandeau-Nelson MD, Laurens L, Shi Z, Xia H, Smith AM, Guiltinan MJ (2011) Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize. Plant Physiol 156:479–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao FM, Qi X, Xiao J, Wang XZ (2007) Improved method for determining starch branching enzyme activity. Plant Physiol Comm 6:1167–1169

    Google Scholar 

  • Zhu L, Liu Q, Sang Y, Gu M, Shi Y (2010) Underlying reasons for waxy rice flours having different pasting properties. Food Chem 120:94–100

    Article  CAS  Google Scholar 

  • Zhu L, Gu M, Meng X, Cheung SC, Yu H, Huang J, Sun Y, Shi Y, Liu Q (2012) High-amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnol J 10:353–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Liu, Q., Zhang, C., and Man, J. (Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, Yangzhou University) for assistance in GPC analysis. We thank Cong, H. (Life Science College of Shandong University) for help on performing SEM for observing the morphology of starch granules. We thank Li, S. (Life Science College of Shandong University) for the maize shoot-tip genetic transformation and cultivation. This work was supported by the Hi-Tech Research and Development (863 Program of China, 2012AA10A306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juren Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Li, N., Li, B. et al. Reduced expression of starch branching enzyme IIa and IIb in maize endosperm by RNAi constructs greatly increases the amylose content in kernel with nearly normal morphology. Planta 241, 449–461 (2015). https://doi.org/10.1007/s00425-014-2192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2192-1

Keywords

Navigation