Skip to main content

Advertisement

Log in

Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Warming, watering and elevated atmospheric CO2-concentration effects have been extensively studied separately; however, their combined impact on plants is not well understood. In the current research, we examined plant growth and physiological responses of three dominant species from the Eurasian Steppe with different functional traits to a combination of elevated CO2, high temperature, and four simulated precipitation patterns. Elevated CO2 stimulated plant growth by 10.8–41.7 % for a C3 leguminous shrub, Caragana microphylla, and by 33.2–52.3 % for a C3 grass, Stipa grandis, across all temperature and watering treatments. Elevated CO2, however, did not affect plant biomass of a C4 grass, Cleistogenes squarrosa, under normal or increased precipitation, whereas a 20.0–69.7 % stimulation of growth occurred with elevated CO2 under drought conditions. Plant growth was enhanced in the C3 shrub and the C4 grass by warming under normal precipitation, but declined drastically with severe drought. The effects of elevated CO2 on leaf traits, biomass allocation and photosynthetic potential were remarkably species-dependent. Suppression of photosynthetic activity, and enhancement of cell peroxidation by a combination of warming and severe drought, were partly alleviated by elevated CO2. The relationships between plant functional traits and physiological activities and their responses to climate change were discussed. The present results suggested that the response to CO2 enrichment may strongly depend on the response of specific species under varying patterns of precipitation, with or without warming, highlighting that individual species and multifactor dependencies must be considered in a projection of terrestrial ecosystem response to climatic change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

F v/F m :

Maximal efficiency of PSII photochemistry

J max :

Maximum rate of electron transport

LARMR:

Leaf area and root mass ratio

LMR:

Leaf mass ratio

RGR:

Relative growth rate

MDA:

Malondialdehyde

PCA:

Principal component analysis

PSII:

Photosystem II

RMR:

Root mass ratio

SLA:

Specific leaf area

SSL:

Specific stem length

SMR:

Stem mass ratio

V c,max :

Maximum rate of carboxylation

×:

Sign for combination or interaction treatments

References

  • Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, van der Linden L, Beier C (2011) Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant Cell Environ 34:1207–1222

    Article  CAS  PubMed  Google Scholar 

  • Aranjuelo I, Ebbets AL, Evans RD et al (2011) Maintenance of C sinks sustains enhanced C assimilation during long-term exposure to elevated (CO2) in Mojave Desert shrubs. Oecologia 167:339–354

    Article  PubMed  Google Scholar 

  • Bai Y, Han X, Wu J, Chen Z, Li L (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184

    Article  CAS  PubMed  Google Scholar 

  • Bauweraerts I, Wertin TM, Ameye M, McGuire MA, Teskey RO, Steppe K (2013) The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings. Glob Change Biol 19:517–528

    Article  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001) Improved temperature response functions for models of Rubisco limited photosynthesis. Plant Cell Environ 24:253–259

    Article  CAS  Google Scholar 

  • Booker FL, Fiscus EL (2005) The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean. J Exp Bot 56:2139–2151

    Article  CAS  PubMed  Google Scholar 

  • Bütof A, von Riedmatten LR, Dormann CF, Scherer-Lorenzen M, Welk E, Bruelheide H (2012) The responses of grassland plants to experimentally simulated climate change depend on land use and region. Glob Change Biol 18:127–137

    Article  Google Scholar 

  • Campbell BD, Smith DMS, GCTE Pastures and Rangelands Network members (2000) A synthesis of recent global change research on pasture and rangeland production: reduced uncertainties and their management implications. Agric Ecosyst Environ 82:39–55

    Article  Google Scholar 

  • Davidson RL (1969) Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover. Ann Bot 33:561–569

    Google Scholar 

  • Dreesen FE, Boeck HJD, Janssens IA, Nijs I (2012) Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ Exp Bot 79:21–30

    Article  Google Scholar 

  • Dukes JS, Chiariello NR, Loarie SR, Field CB (2011) Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes. Ecol Appl 21:1887–1894

    Article  PubMed  Google Scholar 

  • Erice G, Irigoyen JJ, Pérez P, Martínez-Carrasco R, Sánchez-Díaz M (2006) Effect of elevated CO2, temperature and drought on photosynthesis of nodulated alfalfa during a cutting regrowth cycle. Physiol Plant 126:458–468

    Article  CAS  Google Scholar 

  • Faria T, Wilkins D, Besford RT, Vaz M, Pereira JS, Chaves MM (1996) Growth at elevated CO2 leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber L. seedlings. J Exp Bot 47:1755–1761

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Farrar JF, Williams ML (1991) The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source—sink relations and respiration. Plant Cell Environ 14:819–830

    Article  CAS  Google Scholar 

  • Gérard-Monnier D, Erdelmeier I, Régnard K, Moze-Henry N, Yadan J-C, Chaudière J (1998) Reactions of N-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol 11:1176–1183

    Article  PubMed  Google Scholar 

  • Gutiérrez D, Gutiérrez E, Pérez P, Morcuende R, Verdejo AL, Martinez-Carrasco R (2009) Acclimation to future atmospheric CO2 levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers. Physiol Plant 137:86–100

    Article  PubMed  Google Scholar 

  • IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, pp 1–19

    Google Scholar 

  • Jagadish KSV, Cairns JE, Kumar A, Somayanda IM, Craufurd PQ (2011) Does susceptibility to heat stress confound screening for drought tolerance in rice? Funct Plant Biol 38:261–269

    Article  Google Scholar 

  • Janssens IA, Crookshanks M, Taylor G, Ceulemans R (1998) Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. Glob Change Biol 4:871–878

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer, New York

    Google Scholar 

  • Laliberté E, Shipley B, Norton DA, Scott D (2012) Which plant traits determine abundance under long-term shifts in soil resource availability and grazing intensity? J Ecol 100:662–677

    Article  Google Scholar 

  • Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140:779–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leishman MR, Haslehurst T, Ares Am Baruch Z (2007) Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol 176:635–643

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xia J, Wan S (2010) Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol 188:187–198

    Article  PubMed  Google Scholar 

  • Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W (2013) The critical role of extreme heat for maize production in the United States. Nat Clim Change 3:497–501

    Article  Google Scholar 

  • Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:240–247

    Article  Google Scholar 

  • Luo Y, Su B, Currie WS et al (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  CAS  PubMed  Google Scholar 

  • Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458:1158–1162

    Article  CAS  PubMed  Google Scholar 

  • Milcu A, Lukac M, Subke J-A et al (2012) Biotic carbon feedbacks in a materially closed soil-vegetation-atmosphere system. Nat Clim Change 2:281–284

    Article  CAS  Google Scholar 

  • Morgan JA, Milchunas DG, LeCain DR, West M, Mosier AR (2007) Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. P Natl Acad Sci USA 104:14724–14729

    Article  CAS  Google Scholar 

  • Morgan JA, LeCain DR, Pendall E et al (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205

    Article  CAS  PubMed  Google Scholar 

  • Newton PCD, Allard V, Carran RA, Lieffering M (2006) In: Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (eds) Managed ecosystems and CO2: case studies. Processes and perspectives. Springer, Berlin, pp 157–171

    Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2—do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Article  Google Scholar 

  • Oliveira ED, Bramley H, Siddique KHM, Henty S, Berger J, Palta JA (2013) Can elevated CO2 combined with high temperature ameliorate the effect of terminal drought in wheat? Funct Plant Biol 40:160–171

    Article  Google Scholar 

  • Osnas JL, Lichstein JW, Reich PB, Pacala SW (2013) Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340:741–744

    Article  CAS  PubMed  Google Scholar 

  • Pendall E, Mosier AR, Morgan JA (2004) Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. New Phytol 162:447–458

    Article  Google Scholar 

  • Poorter L (1999) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct Ecol 13:396–410

    Article  Google Scholar 

  • Prasad VPV, Boote KJ, Allen LH Jr (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139:237–251

    Article  Google Scholar 

  • Rogers A, Ainsworth EA, Leakey ADB (2009) Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol 151:1009–1016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, JoséIrigoyen J, Morales F (2012) Climate change (elevated CO2, elevated temperature and moderate drought) triggers the antioxidant enzymes response of grapevine cv. Tempranillo, avoiding oxidative damage. Physiol Plant 144:99–110

    Article  CAS  PubMed  Google Scholar 

  • Semenov MA, Shewry PR (2011) Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci Rep 1:66. doi:10.1038/srep00066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF et al (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  CAS  PubMed  Google Scholar 

  • Teng NJ, Wang J, Chen T, Wu XQ, Wang YH, Lin JX (2006) Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol 172:92–103

    Article  CAS  PubMed  Google Scholar 

  • Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT (2011) Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan desert grassland. Glob Change Biol 17:1505–1515

    Article  Google Scholar 

  • Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, Muller B, Granier C, Simonneau T (2012) Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? Plant Cell Environ 35:702–718

    Article  PubMed  Google Scholar 

  • von Caemmerer S, Furbank RT (1999) Modelling C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, Toronto, pp 173–211

    Chapter  Google Scholar 

  • von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosynth Res 77:191–207

    Article  Google Scholar 

  • Warren JM, Norby RJ, Wullschleger SD (2011) Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol 31:117–130

    Article  PubMed  Google Scholar 

  • Way DA (2013) Will rising CO2 and temperatures exacerbate the vulnerability of trees to drought? Tree Physiol 33:775–778

    Article  PubMed  Google Scholar 

  • WRI (2013) Grassland extent and change. http://www.wri.org/publication/content/8269. Assessed 25 Mar 2013

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Xu ZZ, Zhou GS (2005) Effects of water stress on carbon allocation in the perennial grass Leymus chinensis under two nocturnal temperatures. Physiol Plant 123:272–280

    Article  CAS  Google Scholar 

  • Xu ZZ, Zhou GS (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Xu ZZ, Zhou GS (2011) Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunchgrass. BMC Plant Biol 11:21. doi:10.1186/1471-2229-11-21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu ZZ, Zhou GS, Wang YH (2007) Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia. Plant Soil 301:87–97

    Article  CAS  Google Scholar 

  • Xu ZZ, Shimizu H, Yagasaki Y, Ito S, Zheng YR, Zhou GS (2013) Interactive effects of elevated CO2, drought, and warming on plants. J Plant Growth Regul. doi:10.1007/s00344-013-9337-5 (in press)

    Google Scholar 

  • Zhang L, Wu D, Shi H, Zhang C, Zhan X, Zhou S (2011) Effects of elevated CO2 and N addition on growth and N2 fixation of a legume subshrub (Caragana microphylla Lam.) in temperate grassland in China. PLoS One 6(10):e26842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Xie Z, Jiang L, Yu Y, Shimizu H, Rimmington GM (2005) Effects of burial in sand and water supply regime on seedling emergence of six species. Ann Bot 95:1237–1245

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Basic Research Program of China (2010CB951301), the National Natural Science Foundation of China (31170456), State Key Laboratory of Vegetation and Environmental Change (2011zyts09), and the Japan Society for the Promotion of Science (P07622). We greatly thank all researchers for their loyal help during the present study. The authors also appreciate the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhu Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Shimizu, H., Ito, S. et al. Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta 239, 421–435 (2014). https://doi.org/10.1007/s00425-013-1987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1987-9

Keywords

Navigation