Skip to main content
Log in

Demonstration of an intramitochondrial invertase activity and the corresponding sugar transporters of the inner mitochondrial membrane in Jerusalem artichoke (Helianthus tuberosus L.) tubers

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Genetic evidences indicate that alkaline/neutral invertases are present in plant cell organelles, and they might have a novel physiological function in mitochondria. The present study demonstrates an invertase activity in the mitochondrial matrix of Helianthus tuberosus tubers. The pH optimum, the kinetic parameters and the inhibitor profile of the invertase activity indicated that it belongs to the neutral invertases. In accordance with this topology, transport activities responsible for the mediation of influx/efflux of substrate/products were studied in the inner mitochondrial membrane. The transport of sucrose, glucose and fructose was shown to be bidirectional, saturable and independent of the mitochondrial respiration and membrane potential. Sucrose transport was insensitive to the inhibitors of the proton-sucrose symporters. The different kinetic parameters and inhibitors as well as the absence of cross-inhibition suggest that sucrose, glucose and fructose transport are mediated by separate transporters in the inner mitochondrial membrane. The mitochondrial invertase system composed by an enzyme activity in the matrix and the corresponding sugar transporters might have a role in both osmoregulation and intermediary metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Tris:

2-amino-2-(hydroxymethyl)-1,3-propanediol

MOPS:

Morpholinepropanesulfonic acid

JAM:

Jerusalem artichoke mitochondria

DEPC:

Diethylpyrocarbonate

References

  • Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    Article  PubMed  CAS  Google Scholar 

  • Bánhegyi G, Marcolongo P, Puskás F, Fulceri R, Mandl J, Benedetti A (1998) Dehydroascorbate and ascorbate transport in rat liver microsomal vesicles. J Biol Chem 273:2758–2762

    Article  PubMed  Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassl M (1974) Enzymatic assay of fumarase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 1. Academic Press, New York, pp 543–545

    Google Scholar 

  • Büttner M (2007) The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett 581:2318–2324

    Article  PubMed  CAS  Google Scholar 

  • Büttner M, Sauer N (2000) Monosaccharide transporters in plants: structure, function and physiology. Biochim Biophys Acta 1465:263–274

    Article  PubMed  Google Scholar 

  • Colombini M (1979) A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279:643–645

    Article  PubMed  CAS  Google Scholar 

  • Daie J, Wilusz EJ (1987) Facilitated transport of glucose in isolated phloem segments of celery. Plant Physiol 85:711–715

    PubMed  CAS  Google Scholar 

  • Farré EM, Tiessen A, Roessner U, Geigenberger P, Trethewey RN, Willmitzer L (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiol 127:685–700

    Article  PubMed  CAS  Google Scholar 

  • Fulceri R, Bánhegyi G, Gamberucci A, Giunti R, Mandl J, Benedetti A (1994) Evidence for the intraluminal positioning of p-nitrophenol UDP-glucuronosyltransferase activity in rat liver microsomal vesicles. Arch Biochem Biophys 309:43–46

    Article  PubMed  CAS  Google Scholar 

  • Gallagher J, Pollock C (1998) Isolation and characterization of a cDNA clone from Lolium temulentum L. encoding for a sucrose hydrolytic enzyme which shows alkaline/neutral invertase activity. J Exp Bot 49:789–795

    Article  CAS  Google Scholar 

  • Gostimskaya IS, Grivennikova VG, Zharova TV, Bakeeva LE, Vinogradov AD (2003) In situ assay of the intramitochondrial enzymes: use of alamethicin for permeabilization of mitochondria. Anal Biochem 313:46–52

    Article  PubMed  CAS  Google Scholar 

  • Graham JW, Williams TC, Morgan M, Fernie AR, Ratcliffe RG, Sweetlove LJ (2007) Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell 19:3723–3738

    Article  PubMed  CAS  Google Scholar 

  • Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634

    Article  PubMed  CAS  Google Scholar 

  • Johansson FI, Michalecka AM, Møller IM, Rasmusson AG (2004) Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria. Biochem J 380:193–202

    Article  PubMed  Google Scholar 

  • KC S, Cárcamo JM, Golde DW (2005) Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J 19:1657–1667

    Article  PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers. Transport and sugar sensing. Plant Cell 11:707–726

    Article  PubMed  CAS  Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Sturm A (1996) Purification and characterization of neutral and alkaline invertase from carrot. Plant Physiol 112:1513–1522

    Article  PubMed  CAS  Google Scholar 

  • Lemoine R (2000) Sucrose transporters in plants: update on function and structure. Biochim Biophys Acta 1465:246–262

    Article  PubMed  CAS  Google Scholar 

  • Lidén AC, Møller IM (1988) Purification, characterization and storage of mitochondria from Jerusalem artichoke tubers. Physiol Plant 72:265–270

    Article  Google Scholar 

  • Logan DC (2006) The mitochondrial compartment. J Exp Bot 57:1225–1243

    Article  PubMed  CAS  Google Scholar 

  • Loos H, Kramer R, Sahm H, Sprenger GA (1994) Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J Bacteriol 176:7688–7693

    PubMed  CAS  Google Scholar 

  • Lu JMY, Bush DR (1998) His-65 in the proton-sucrose symporter is an essential amino acid whose modification with site-directed mutagenesis increases transport activity. Proc Natl Acad Sci USA 95:9025–9030

    Article  PubMed  CAS  Google Scholar 

  • Margittai É, Bánhegyi G (2008) Isocitrate dehydrogenase: a NADPH-generating enzyme in the lumen of the endoplasmic reticulum. Arch Biochem Biophys 471:184–190

    Article  PubMed  CAS  Google Scholar 

  • McRae SR, Christopher JT, Smith JAC, Holtum JAM (2002) Sucrose transport across the vacuolar membrane of Ananas comosus. Funct Plant Biol 29:717–724

    Article  CAS  Google Scholar 

  • Milner ID, Ho LC, Hall JL (1995) Properties of proton and sugar transport at the tonoplast of tomato (Lycopersicon esculentum) fruit. Physiol Plant 94:399–410

    Article  CAS  Google Scholar 

  • Møller IM, Lindén AC, Ericson I, Gardeström P (1987) Isolation of submitochondrial particles with different polarities. Methods Enzymol 148:442–453

    Article  Google Scholar 

  • Murayama S, Handa H (2007) Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta 225:1193–1203

    Article  PubMed  CAS  Google Scholar 

  • Nadwodnik J, Lohaus G (2008) Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica, and Apium graveolens. Planta 227:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus HE (2007) Transport of primary metabolites across the plant vacuolar membrane. FEBS Lett 581:2223–2226

    Article  PubMed  CAS  Google Scholar 

  • Osmani SA, Scrutton MC (1983) The sub-cellular localisation of pyruvate carboxylase and of some other enzymes in Aspergilus nidulans. Eur J Biochem 133:551–560

    Article  PubMed  CAS  Google Scholar 

  • Pastore D, Trono D, Laus MN, Di Fonzo N, Flagella Z (2007) Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J Exp Bot 58:195–210

    Article  PubMed  CAS  Google Scholar 

  • Preisser J, Komor E (1991) Sucrose uptake into vacuoles of sugarcane suspension cells. Planta 186:109–114

    Article  CAS  Google Scholar 

  • Preisser J, Sprügel H, Komor E (1992) Solute distribution between vacuole and cytosol of sugarcane suspension cells: Sucrose is not accumulated in the vacuole. Planta 186:203–211

    Article  CAS  Google Scholar 

  • Roitsch T, González MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    Article  PubMed  CAS  Google Scholar 

  • Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Lett 581:2309–2317

    Article  PubMed  CAS  Google Scholar 

  • Shiratake K, Kanayama Y, Maeshima M, Yamaki S (1997) Changes in H(+)-pumps and a tonoplast intrinsic protein of vacuolar membranes during the development of pear fruit. Plant Cell Physiol 38:1039–1045

    PubMed  CAS  Google Scholar 

  • Stein WD (1990) Channels, carriers, and pumps: an introduction to membrane transport. Academic Press, San Diego

    Google Scholar 

  • Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sturm A, Hess D, Lee HS, Lienhard S (1999) Neutral invertase is a novel type of sucrose-cleaving enzyme. Physiol Plant 107:159–165

    Article  CAS  Google Scholar 

  • Sweetlove LJ, Mowday B, Hebestreit HF, Leaver CJ, Millar AH (2001) Nucleoside diphosphate kinase III is localized to the inter-membrane space in plant mitochondria. FEBS Lett 508:272–276

    Article  PubMed  CAS  Google Scholar 

  • Szarka A, Horemans N, Bánhegyi G, Asard H (2004) Facilitated glucose and dehydroascorbate transport in plant mitochondria. Arch Biochem Biophys 428:73–80

    Article  PubMed  CAS  Google Scholar 

  • Vargas WA, Pontis HG, Salerno GL (2008) New insights on sucrose metabolism: evidence for an active A/N-Inv in chloroplasts uncovers a novel component of the intracellular carbon trafficking. Planta 227:795–807

    Article  PubMed  CAS  Google Scholar 

  • Vera JC, Reyes AM, Cárcamo JG, Velásquez FV, Rivas CI, Zhang RH, Strobel P, Iribarren R, Scher HI, Slebe JC, Golde DW (1996) Genistein is a natural inhibitor of hexose and dehydroascorbic acid transport through the glucose transporter, GLUT1. J Biol Chem 271:8719–8724

    Article  PubMed  CAS  Google Scholar 

  • Vorster DJ, Botha FC (1998) Partial purification and characterisation of sugarcane neutral invertase. Phytochemistry 49:651–655

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Qu H, Dibley KE, Offler CE, Patrick JW (2007) A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators. Plant J 49:750–764

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a Hungarian-Flemish Bilateral Intergovernmental S&T grant (B/30/04), and by National Scientific Research Fund grants (OTKA F46743 and 64215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Szarka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szarka, A., Horemans, N., Passarella, S. et al. Demonstration of an intramitochondrial invertase activity and the corresponding sugar transporters of the inner mitochondrial membrane in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Planta 228, 765–775 (2008). https://doi.org/10.1007/s00425-008-0778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0778-1

Keywords

Navigation