Skip to main content
Log in

In situ analysis by microspectroscopy reveals triterpenoid compositional patterns within leaf cuticles of Prunus laurocerasus

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The cuticular waxes on the leaves of Prunus laurocerasus are arranged in distinct layers differing in triterpenoid concentrations (Jetter et al., Plant Cell Environ 23:619–628, 2000). In addition to this transversal gradient, the lateral distribution of cuticular triterpenoids must be investigated to fully describe the spatial distribution of wax components on the leaf surfaces. In the present investigation, near infrared (NIR) Raman microspectroscopy, coherent anti-Stokes Raman scattering (CARS) microscopy, and third harmonic generation (THG) spectroscopy were employed to map the triterpenoid distribution in isolated cuticles from adaxial and abaxial sides of P. laurocerasus leaves. The relative concentrations of ursolic acid and oleanolic acid were calculated by treating the cuticle spectra as linear combinations of reference spectra from the major compounds found in the wax. Raman maps of the adaxial cuticle showed that the triterpenoids accumulate to relatively high concentrations over the periclinal regions of the pavement cells, while the very long chain aliphatic wax constituents are distributed fairly evenly across the entire adaxial cuticle. In the analysis of the abaxial cuticles, the triterpenoids were found to accumulate in greater amounts over the guard cells relative to the pavement cells. The very long chain aliphatic compounds accumulated in the cuticle above the anticlinal cell walls of the pavement cells, and were found at low concentrations above the periclinals and the guard cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

ATR:

Attenuated total reflectance

BSTFA:

bis-N,N-(trimethylsilyl)trifluoroacetamide

CARS:

Coherent anti-Stokes Raman scattering

CCD:

Charge-coupled device

CM:

Cuticular membrane

FT-IR:

Fourier transform infrared

GC:

Gas chromatography

GC–FID:

Gas chromatography–flame ionization detector

MS:

Mass spectrometry

MX:

Cutin matrix

NIR:

Near infrared

NMR:

Nuclear magnetic resonance

OPA:

Optical parametric amplifier

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

THG:

Third harmonic generation

TIR:

Total internal reflection

Ti:Sapphire:

Titanium:Sapphire

ToF-SIMS:

Time-of-flight secondary ion mass spectrometry

XPS:

X-ray photoelectron spectroscopy

References

  • Barnes JD, Percy KE, Paul ND, Jones P, McLaughlin CK, Mullineaux PM, Creissen G, Wellburn AR (1996) The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tobacum L) leaf surfaces. J Exp Bot 47:99–109

    Article  CAS  Google Scholar 

  • Benitez JJ, Matas AJ, Heredia A (2004) Molecular characterization of the plant biopolyester cutin by AFM and spectroscopic techniques. J Struct Biol 147:179–184

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund GC (1975) Effects of focusing on 3rd-order nonlinear processes in isotropic media. IEEE J Quantum Electron 11:287–296

    Article  Google Scholar 

  • Boyd R (1992) Nonlinear optics. Academic, New York

    Google Scholar 

  • Brennan JF, Romer TJ, Lees RS, Tercyak AM, Kramer JR, Feld MS (1997) Determination of human coronary artery composition by Raman spectroscopy. Circulation 96:99–105

    PubMed  CAS  Google Scholar 

  • Canet D, Rohr R, Chamel A, Guillain F (1996) Atomic force microscopy study of isolated ivy leaf cuticles observed directly and after embedding in Epon(R). New Phytol 134:571–577

    Article  Google Scholar 

  • Carver TLW, Thomas BJ (1990) Normal germling development by Erysiphe graminis on cereal leaves freed of epicuticular wax. Plant Pathol 39:367–375

    Article  Google Scholar 

  • Carver TLW, Thomas BJ, Ingerson-Morris SM, Roderick HW (1990) The role of the abaxial leaf surface waxes of Lolium spp. in resistance to Erysiphe graminis. Plant Pathol 39:573–583

    Article  Google Scholar 

  • Christie WW (2003) Lipid analysis. The Oily Press, Bridgewater

    Google Scholar 

  • Débarre D, Beaurepaire E (2007) Quantitative characterization of biological liquids for third-harmonic generation microscopy. Biophys J 92:603–612

    Article  PubMed  CAS  Google Scholar 

  • Débarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E (2006a) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3:47–53

    Article  PubMed  CAS  Google Scholar 

  • Débarre D, Pena AM, Supatto W, Boulesteix T, Strupler M, Sauviat MP, Martin JL, Schanne-Klein MC, Beaurepaire E (2006b) Second- and third-harmonic generation microscopies for the structural imaging of intact tissues. Med Sci (Paris) 22:845–850

    Google Scholar 

  • Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194

    Article  Google Scholar 

  • Ferraro JR, Nakamoto K (1994) Introductory Raman spectroscopy. Academic, Boston

    Google Scholar 

  • Fischer RA (1973) Relationship of stomatal aperture and guard-cell turgor pressure in Vicia faba. J Exp Bot 24:387–399

    Article  CAS  Google Scholar 

  • Genet MJ, Jacques C, Mozes N, Van Hove C, Lejeune A, Rouxhet PG (2002) Use of differential charging to analyse microscopic specimens of Azolla leaves by XPS. Surf Interface Anal 33:601–606

    Article  CAS  Google Scholar 

  • Gilly C, Rohr R, Chamel A (1997) Ultrastructure and radiolabelling of leaf cuticles from ivy (Hedera helix L.) plants in vitro and during ex vitro acclimatization. Ann Bot 80:139–145

    Article  Google Scholar 

  • Greene PR, Bain CD (2005) Total internal reflection Raman spectroscopy of barley leaf epicuticular waxes in vivo. Colloids Surf B Biointerfaces 45:174–180

    Article  PubMed  CAS  Google Scholar 

  • Hendra PJ, Jones CH, Warnes GM (1991) Fourier transform Raman spectroscopy instrumentation and chemical applications. Ellis Horwood, Chichester

    Google Scholar 

  • Jetter R, Schäffer S (2001) Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1737

    Article  PubMed  CAS  Google Scholar 

  • Jetter R, Schäffer S, Riederer M (2000) Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Plant Cell Environ 23:619–628

    Article  CAS  Google Scholar 

  • Kano H, Hamaguchi H (2005) Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy. Opt Express 13:1322–1327

    Article  PubMed  Google Scholar 

  • Kee TW, Cicerone MT (2005) Biological imaging using broadband coherent anti-Stokes Raman scattering (CARS) microscopy. Biophys J 88:362A–362A

    Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  PubMed  CAS  Google Scholar 

  • Li L, Wang HF, Cheng JX (2005) Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains. Biophys J 89:3480–3490

    Article  PubMed  CAS  Google Scholar 

  • Long DA (1977) Raman spectroscopy. McGraw-Hill, New York

    Google Scholar 

  • Mechaber WL, Marshall DB, Mechaber RA, Jobe RT, Chew FS (1996) Mapping leaf surface landscapes. Proc Natl Acad Sci USA 93:4600–4603

    Article  PubMed  CAS  Google Scholar 

  • Meidner H, Edwards M (1996) Osmotic and turgor pressures of guard cells. Plant Cell Environ 19:503–503

    Article  Google Scholar 

  • Merk S, Blume A, Riederer M (1998) Phase behaviour and crystallinity of plant cuticular waxes studied by Fourier transform infrared spectroscopy. Planta 204:44–53

    Article  CAS  Google Scholar 

  • Müller M, Schins JM (2002) Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy. J Phys Chem B 106:3715–3723

    Article  CAS  Google Scholar 

  • Müller M, Schins JM, Nastase N, Wurpel S, Brakenhoff FGJ (2002) Imaging the chemical composition and thermodynamic state of lipid membranes with multiplex CARS microscopy. Biophys J 82:175A–175A

    Google Scholar 

  • Nan XL, Cheng JX, Xie XS (2003) Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J Lipid Res 44:2202–2208

    Article  PubMed  CAS  Google Scholar 

  • Nan XL, Potma EO, Xie XS (2006) Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy. Biophys J 91:728–735

    Article  PubMed  CAS  Google Scholar 

  • Orgell WH (1955) The isolation of plant cuticle with pectic enzymes. Plant Physiol 30:78–80

    PubMed  CAS  Google Scholar 

  • Perkins MC, Roberts CJ, Briggs D, Davies MC, Friedmann A, Hart CA, Bell GA (2005) Surface morphology and chemistry of Prunus laurocerasus L. leaves: a study using X-ray photoelectron spectroscopy, time-of-flight secondary-ion mass spectrometry, atomic-force microscopy and scanning-electron microscopy. Planta 221:123–134

    Article  PubMed  CAS  Google Scholar 

  • Petracek PD, Bukovac MJ (1995) Rheological properties of enzymatically isolated tomato fruit cuticle. Plant Physiol 109:675–679

    PubMed  CAS  Google Scholar 

  • Potma EO, Xie XS (2005) Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy. Chemphyschem 6:77–79

    Article  PubMed  CAS  Google Scholar 

  • Reicosky DA, Hanover JW (1978) Physiological effects of surface waxes. I. Light reflectance for glaucous and non-glaucous Picea pungens. Plant Physiol 62:101–104

    PubMed  Google Scholar 

  • Ribeiro da Luz B (2006) Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies. New Phytol 172:305–318

    Article  CAS  Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    Article  PubMed  CAS  Google Scholar 

  • Round AN, Yan B, Dang S, Estephan R, Stark RE, Batteas JD (2000) The influence of water on the nanomechanical behavior of the plant biopolyester cutin as studied by AFM and solid-state NMR. Biophys J 79:2761–2767

    Article  PubMed  CAS  Google Scholar 

  • Schaller RD, Johnson JC, Saykally RJ (2000) Nonlinear chemical imaging microscopy: near-field third harmonic generation imaging of human red blood cells. Anal Chem 72:5361–5364

    Article  PubMed  CAS  Google Scholar 

  • Schreiber L, Riederer M (1996) Ecophysiology of cuticular transpiration: comparative investigation of cuticular water permeability of plant species from different habitats. Oecologia 107:426–432

    Article  Google Scholar 

  • Tai SP, Lee WJ, Shieh DB, Wu PC, Huang HY, Yu CH, Sun CK (2006) In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy. Opt Express 14:6178–6187

    Article  PubMed  Google Scholar 

  • Veraverbeke EA, Lammertyn J, Nicolai BM, Irudayaraj J (2005) Spectroscopic evaluation of the surface quality of apple. J Agric Food Chem 53:1046–1051

    Article  PubMed  CAS  Google Scholar 

  • Wang HF, Fu Y, Zickmund P, Shi RY, Cheng JX (2005) Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys J 89:581–591

    Article  PubMed  CAS  Google Scholar 

  • Wen M, Au J, Gniwotta F, Jetter R (2006) Very-long-chain secondary alcohols and alkanediols in cuticular waxes of Pisum sativum leaves. Phytochemistry 67:2494–2502

    Article  PubMed  CAS  Google Scholar 

  • Wurpel GW, Rinia HA, Müller M (2005) Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy. J Microsc 218:37–45

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Wittwer SH, Bukovac MJ (1964) Penetration of ions through isolated cuticles. Plant Physiol 39:28–32

    PubMed  CAS  Google Scholar 

  • Yang HS, An HJ, Feng GP, Li YF (2005) Visualization and quantitative roughness analysis of peach skin by atomic force microscopy under storage. LWT Food Sci Technol 38:571–577

    Article  CAS  Google Scholar 

  • Yu MML, Schulze HG, Jetter R, Blades MW, Turner RFB (2007) Raman microspectroscopic analysis of triterpenoids found in plant cuticles. Appl Spectrosc 61:32–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation (CFI), the British Columbia Knowledge Development Fund (BCKDF), the Canada Research Chairs Program, and the University of British Columbia (UBC) for financial support. Instrumentation and infrastructure for this work was provided by the UBC Laboratory for Advanced Spectroscopy and Imaging Research (LASIR) and Laboratory for Molecular Biophysics (LMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Jetter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M.M.L., Konorov, S.O., Schulze, H.G. et al. In situ analysis by microspectroscopy reveals triterpenoid compositional patterns within leaf cuticles of Prunus laurocerasus . Planta 227, 823–834 (2008). https://doi.org/10.1007/s00425-007-0659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0659-z

Keywords

Navigation