Skip to main content
Log in

Transgenic expression of the von Willebrand A domain of the BONZAI 1/COPINE 1 protein triggers a lesion-mimic phenotype in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The copines are a newly identified, widely distributed class of Ca2+-dependent, phospholipid-binding proteins that may be involved in cellular signaling. The copines have a characteristic domain structure: two C2 domains in the N-terminal region and a von Willebrand A (VWA) domain in the C-terminal region. Studies suggest that copines interact with target protein(s) via their VWA domain and recruit the proteins to a membrane location through the activity of the C2 domains. Arabidopsis thaliana (L.) Heynh. plants with loss-of-function mutations in the BONZAI 1/COPINE 1 (BON1/CPN1) gene display aberrant regulation of defense responses, including development of a lesion-mimic phenotype, an accelerated hypersensitive response, and increased resistance to a bacterial and an oomycetous pathogen. The phenotype of mutants in BON1/CPN1 is both humidity- and temperature-sensitive. In this study, we generated transgenic plants expressing either the VWA or the C2 portions of BON1/CPN1 in the wild-type Columbia-0 (Col-0) genetic background. Transgenic plants expressing the BON1/CPN1 C2 domain portion appeared like wild-type plants. However, transgenic plants expressing the BON1/CPN1 VWA domain exhibited a lesion-mimic phenotype that partially phenocopied bon1/cpn1 mutant plants. Our data suggest that BON1/CPN1 VWA domain fragments may interfere with the function of the full-length endogenous BON1/CPN1 protein, possibly by competing with the full-length BON1/CPN1 protein for association with target proteins normally bound to the full-length BON1/CPN1 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a–j
Fig. 3a,b
Fig. 4a,b
Fig. 5

Similar content being viewed by others

Abbreviations

HR :

Hypersensitive response

HH :

High humidity

LH :

Low humidity

P.s.t. :

Pseudomonas syringae pv. tomato

VWA :

Von Willebrand A domain

WT :

Wild type

References

  • Azzi A, Boscoboinik D, Hensey C (1992) The protein kinase C family. Eur J Biochem 208:547–557

    CAS  PubMed  Google Scholar 

  • Brose N, Hofmann K, Hata Y, Südhof TC (1995) Mammalian homologues of Caenorhabditis elegans unc-13 gene define a novel family of C2-domain proteins. J Biol Chem 270:25273–25280

    CAS  PubMed  Google Scholar 

  • Clough SJ, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Creutz CE, Tomsig JL, Snyder SL, Gautier MC, Skouri F, Beisson J, Cohen J (1998) The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipids-binding proteins conserved from Paramecium to humans. J Biol Chem 273:1393–1402

    Article  CAS  PubMed  Google Scholar 

  • Essen LO, Perisic O, Cheung R, Katan M, Williams RL (1996) Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature 380:595–602

    Article  CAS  PubMed  Google Scholar 

  • Goodman RN (1968) The hypersensitive reaction in tobacco: a reflection of changes in host cell permeability. Phytopathology 58:872–873

    Google Scholar 

  • Goodman RN (1972) Electrolyte leakage and membrane damage in relation to bacterial population, pH, and ammonia production in tobacco leaf tissue inoculated with Pseudomonas pisi. Phytopathology 62:1327–1331

    CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Grisafi P, Cheng SH, Fink GR (2001) Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev 15:2263–2272

    Article  CAS  PubMed  Google Scholar 

  • Jambunathan N, McNellis TW (2003) Regulation of Arabidopsis COPINE 1 gene expression in response to pathogens and abiotic stimuli. Plant Physiol 132:1370–1381

    Article  CAS  PubMed  Google Scholar 

  • Jambunathan N, Siani JM, McNellis TW (2001) A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13:2225–2240

    Article  CAS  PubMed  Google Scholar 

  • Kunkel BN, Bent AF, Dahlbeck D, Innes RW, Staskawicz BJ (1993) RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5:865–875

    Article  CAS  PubMed  Google Scholar 

  • Lacy DB, Wigelsworth DJ, Scobie HM, Young JA, Collier RJ (2004) Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor. Proc Natl Acad Sci USA 101:6367–6372

    Article  CAS  PubMed  Google Scholar 

  • Lee JO, Rieu P, Arnaout MA, Liddington R (1995) Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80:631–638

    Article  CAS  PubMed  Google Scholar 

  • Mock HP, Heller W, Molina A, Neubohn B, Sandermann H, Grimm B (1999) Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to tobacco mosaic virus. J Biol Chem 274:4231–4238

    Article  CAS  PubMed  Google Scholar 

  • Molina A, Volrath S, Guyer D, Maleck K, Ryals J, Ward E (1999) Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. Plant J 17:667–678

    Article  PubMed  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux J-P (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  CAS  PubMed  Google Scholar 

  • Tomsig JL, Creutz CE (2000) Biochemical characterization of copine: a ubiquitous Ca2+-dependent, phospholipid-binding protein. Biochemistry 39:16163–16175

    Article  PubMed  Google Scholar 

  • Tomsig JL, Creutz CE (2002) Copines: a ubiquitous family of Ca2+-dependent phospholipids-binding proteins. Cell Mol Life Sci 59:1467–1477

    Article  CAS  PubMed  Google Scholar 

  • Tomsig JL, Snyder SL, Creutz CE (2003) Identification of targets for calcium signaling through the copine family of proteins. J Biol Chem 278:10048–10054

    Article  CAS  PubMed  Google Scholar 

  • Tomsig JL, Sohma H, Creutz CE (2004) Calcium-dependent regulation of tumour necrosis factor-α receptor signaling by copine. Biochem J 378:1089–1094

    Article  CAS  PubMed  Google Scholar 

  • Tuckwell D (1999) Evolution of von Willebrand factor A (VWA) domains. Biochem Soc Trans 27:835–840

    CAS  PubMed  Google Scholar 

  • Wang Y, Sugita S, Südhof TC (2000) The RIM/NIM family of neuronal C2 domain proteins: interactions with Rab3 and a new class of Src homology 3 domain proteins. J Biol Chem 275:20033–20044

    Article  CAS  PubMed  Google Scholar 

  • Whalen MC, Innes RW, Bent AF, Staskawicz BJ (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49–59

    Article  CAS  PubMed  Google Scholar 

  • Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/Integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13:3369–3387

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Hua J (2004) A haplotype-specific resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16:1060–1071

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Department of Agriculture Cooperative State Research, Education, and Extension Service grant program (USDA–CSREES grant no. 2002-35319-11561 to T.W.M.). Jianxin Liu and Niranjani Jambunathan contributed equally to this work, and are co-first authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy W. McNellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Jambunathan, N. & McNellis, T.W. Transgenic expression of the von Willebrand A domain of the BONZAI 1/COPINE 1 protein triggers a lesion-mimic phenotype in Arabidopsis. Planta 221, 85–94 (2005). https://doi.org/10.1007/s00425-004-1413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1413-4

Keywords

Navigation