Skip to main content

Advertisement

Log in

Muscle IGF-I Ea, MGF, and myostatin mRNA expressions after compensatory overload in hypophysectomized rats

  • Skeletal Muscle
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

To determine whether IGF-I Ea, MGF, and myostatin mRNAs are related to GH-independent overload-induced muscle growth, we examined the expressions of IGF-I Ea and MGF mRNAs in the plantaris muscle after compensatory overload in hypophysectomized rats. The muscles were divided into four groups: normal-control, normal-overloaded, hypophysectomized-control, and hypophysectomized-overloaded. The weights of the plantaris muscle in the normal-overloaded were significantly higher than those of the normal-control. The weights of the hypophysectomized-overloaded were also significantly higher than those of the hypophysectomized-control. IGF-I Ea and MGF mRNAs in normal-overloaded and hypophysectomized-overloaded 3 days after overload were significantly higher than those of normal-control and hypophysectomized-control, respectively. Myostatin mRNAs in normal-overloaded and hypophysectomized-overloaded 3 days after the overload were significantly lower than those of normal-control and hypophysectomized-control, respectively. Thus, it was shown that IGF-I Ea, MGF, and myostatin mRNAs were expressed in association with muscle enlargement after compensatory overload independently of pituitary state. These observations suggest that the expression of IGF-I Ea, MGF, and myostatin mRNAs due to compensatory overload would be associated in a growth-hormone-independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams GR, Haddad F (1996) The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Phys 81:2509–2516

    CAS  Google Scholar 

  2. Adams GR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Phys 84:1716–1722

    CAS  Google Scholar 

  3. Artaza JN, Bhasin S, Mallidis C, Taylor W, Ma K, Gonzalez-Cadavid NF (2002) Endogenous expression and localization of myostatin and its relation to myosin heavy chain distribution in C2C12 skeletal muscle cells. J Cell Physiol 190:170–179

    Article  PubMed  CAS  Google Scholar 

  4. Ambler GR, Butler AA, Padmanabhan BJ, Breier BH, Gluckman PD (1996) The effects of octreotide on GH receptor and IGF-I expression in the GH-deficient rat. J Endocrinol 149:223–231

    Article  PubMed  CAS  Google Scholar 

  5. Carlson CJ, Booth FW, Gordon SE (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol 277:R601–R606

    PubMed  CAS  Google Scholar 

  6. Cheema U, Brown R, Mudera V, Yang SY, McGrouther G, Goldspink G (2005) Mechanical signals and IGF-I gene splicing in vitro in relation to development of skeletal muscle. J Cell Physiol 202:67–75

    Article  PubMed  CAS  Google Scholar 

  7. DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol 259:E89–E95

    PubMed  CAS  Google Scholar 

  8. Frost RA, Nystrom GJ, Lang CH (2002) Regulation of IGF-I mRNA and signal transducers and activators of transcription-3 and -5 (Stat-3 and -5) by GH in C2C12 myoblasts. Endocrinology 143:492–503

    Article  PubMed  CAS  Google Scholar 

  9. Goldspink G (1999) Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat 194:323–334

    Article  PubMed  CAS  Google Scholar 

  10. Guler H-P, Zapf J, Scheiwiller E, Froesch ER (1988) Recombinant human insulin-like growth factor I stimulates growth and has distinct effects on organ size in hypophysectomized rats. Proc Natl Acad Sci USA 85:4889–4893

    Article  PubMed  CAS  Google Scholar 

  11. Hameed M, Lange KHW, Andersen JL, Schjerling P, Kjaer M, Harridge DR, Goldspink G (2003) The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol 555:231–240

    Article  PubMed  CAS  Google Scholar 

  12. Hameed M, Orrell RW, Cobbold M, Goldspink G, Harridge DR (2003) Expression of IGF-I splicing variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547:247–254

    Article  PubMed  CAS  Google Scholar 

  13. Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549:409–418

    Article  PubMed  CAS  Google Scholar 

  14. Iida K, Itoh E, Kim D-S, del Rincon JP, Coschigano KT, Kopchick JJ, Thorner MO (2004) Muscle mechano growth factor is preferentially induced by growth hormone in growth hormone-deficient lit/lit mice. J Physiol 560:341–349

    Article  PubMed  CAS  Google Scholar 

  15. Isgaard J, Nilsson A, Vikman K, Isaksson OGP (1989) Growth hormone regulates the level of insulin-like growth factor-I mRNA in rat skeletal muscle. J Endocrinol 120:107–112

    PubMed  CAS  Google Scholar 

  16. Ji S, Losinski RL, Cornelius SG, Frank GR, Willis GM, Gerrard DE, Depreux FS, Spurlock ME (1998) Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am J Physiol 275:R1265–R1273

    PubMed  CAS  Google Scholar 

  17. Kim J-S, Cross JM, Bamman MM (2005) Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol 288:E1110–1119

    CAS  Google Scholar 

  18. Kim J-S, Kosek DJ, Petrella JK, Cross JM, Bamman MM (2005) Resting and load-induced levels of myogenic gene transcripts differ between older adults with demonstrable sarcopenia and young men and women. J Appl Phys 99:2149–2158

    Article  CAS  Google Scholar 

  19. Liu W, Thomas SG, Asa SL, Gonzalez-Cadavid N, Bhasin S, Ezzat S (2003) Myostatin is a skeletal muscle target of growth hormone anabolic action. J Clin Endocrinol Metab 88:5490–5496

    Article  PubMed  CAS  Google Scholar 

  20. Lowe WL, Lasky SR, LeRoith D, Roberts Jr CT (1988) Distribution and regulation of rat insulin-like growth factor I messenger ribonucleic acids encoding alternative carboxyterminal E-peptides: evidence for differential processing and regulation in liver. Mol Endocrinol 2:528–535

    Article  PubMed  CAS  Google Scholar 

  21. Marcell TJ, Harman SM, Urban RJ, Metz DD, Rodgers BD, Blackman MR (2001) Comparison of GH, IGF-I, and testosterone with mRNA of receptors and myostatin in skeletal muscle in older men. Am J Physiol 281:E1159–E1164

    CAS  Google Scholar 

  22. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147

    Article  PubMed  CAS  Google Scholar 

  23. McKoy G, Ashley W, Mander J, Yang SY, Williams N, Russell B, Goldspink G (1999) Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol 516:583–592

    Article  PubMed  CAS  Google Scholar 

  24. McPherron AC, Lawler AM, Lee S-J (1997) Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387:83–90

    Article  PubMed  CAS  Google Scholar 

  25. Owino V, Yang SY, Goldspink G (2001) Age-related loss of skeletal muscle function and the inability to express the autocrine form of insulin-like growth factor-1 (MGF) in response to mechanical overload. FEBS Lett 505:259–263

    Article  PubMed  CAS  Google Scholar 

  26. Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A, Fielder TJ, Gonzalez-Cadavid NF (2003) Lower skeletal muscle mass in male transgenic mice with muscle specific overexpression of myostatin. Am J Physiol 285:E876–E888

    CAS  Google Scholar 

  27. Rios R, Carneiro I, Arce VM, Devesa J (2002) Myostatin is an inhibitor of myogenic differentiation. Am J Physiol 282:C993–C999

    CAS  Google Scholar 

  28. Roth SM, Martel GF, Ferrell RE, Metter EJ, Hurley BF, Rogers MA (2003) Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Exp Biol Med 228:706–709

    CAS  Google Scholar 

  29. Saitoh A, Okumoto T, Nakano H, Wada M, Katsuta S (1999) Age effect on expression of myosin heavy and light chain isoforms in suspended rat soleus muscle. J Appl Phys 86:1483–1489

    CAS  Google Scholar 

  30. Schulte JN, Yarasheski KE (2001) Effects of resistance training on the rate of muscle protein synthesis in frail elderly people. Int J Sport Nutr Exerc Metab 11:S111–S118 (Suppl)

    PubMed  Google Scholar 

  31. Shavlakadze T, Davies M, White JD, Grounds MD (2004) Early regeneration of whole skeletal muscle grafts is unaffected by overexpression of IGF-I in MLC/mIGF-I transgenic mice. J Histochem Cytochem 52:873–883

    Article  PubMed  CAS  Google Scholar 

  32. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243

    Article  PubMed  CAS  Google Scholar 

  33. Tian XC, Chen MJ, Pantschenko AG, Yang TJ, Chen TT (1999) Recombinant E-peptides of pro-IGF-I have mitogenic activity. Endocrinology 140:3387–3390

    Article  PubMed  CAS  Google Scholar 

  34. Ullman M, Oldfors A (1991) Skeletal muscle regeneration in young rats is dependent on growth hormone. J Neurol Sci 106:67–74

    Article  PubMed  CAS  Google Scholar 

  35. Walker KS, Kambadur R, Sharma M, Smith HK (2004) Resistance training alters plasma myostatin but not IGF-I in healthy men. Med Sci Sports Exerc 36: 787–793

    Article  PubMed  CAS  Google Scholar 

  36. Wehling M, Cai B, Tidball JG (2000) Modulation of myostatin expression during modified muscle use. FASEB J 14:103–110

    PubMed  CAS  Google Scholar 

  37. Yamaguchi A, Fujikawa T, Tateoka M, Soya H, Sakuma K, Sugiura T, Morita I, Ikeda Y, Hirai T (2006) The expression of IGF-I and myostatin mRNAs in skeletal muscle of hypophysectomized and underfed rats during postnatal growth. Acta Physiol Hung 186:291–300

    CAS  Google Scholar 

  38. Yamaguchi A, Ikeda Y, Hirai T, Fujikawa T, Morita I (2003) Local changes of IGF-I mRNA, GH receptor mRNA and fiber size in rat plantaris muscle following compensatory overload. Jpn J Physiol 53:53–60

    Article  PubMed  CAS  Google Scholar 

  39. Yamaguchi A, Sakuma K, Morita I, Soya H, Takeda H, Katsuta S (1996) Changes in fibre types in rat soleus and plantaris muscles following hypophysectomy and compensatory overload. Acta Physiol Scand 158:89–95

    Article  PubMed  CAS  Google Scholar 

  40. Yang S, Alnaqeeb M, Simpson H, Goldspink G (1996) Cloning and characterization of an IGF-I isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil 17:487–495

    Article  PubMed  CAS  Google Scholar 

  41. Yang SY, Goldspink G (2002) Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett 522:156–160

    Article  PubMed  CAS  Google Scholar 

  42. Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF (2002) Serum myostatin-immunoreactive protein is increased in 60–92 year old women and men with muscle wasting. J Nutr Health Aging 6:343–348

    PubMed  CAS  Google Scholar 

  43. Yeh JK, Aloia JF, Chen M, Ling N, Koo H-C, Millard WJ (1994) Effect of growth hormone administration and treadmill exercise on serum and skeletal IGF-I in rats. Am J Physiol 266:E129–E135

    PubMed  CAS  Google Scholar 

  44. Zachwieja JJ, Smith SR, Sinha-Hikim I, Gonzalez-Cadavid N, Bhasin S (1999) Plasma myostatin-immunoreactive protein is increased after prolonged bed rest with low-dose T3 administration. Journal of Gravitational Physiology 6:11–15

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, A., Fujikawa, T., Shimada, S. et al. Muscle IGF-I Ea, MGF, and myostatin mRNA expressions after compensatory overload in hypophysectomized rats. Pflugers Arch - Eur J Physiol 453, 203–210 (2006). https://doi.org/10.1007/s00424-006-0127-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0127-9

Keywords

Navigation