Skip to main content
Log in

Lactate is a metabolic substrate that sustains extraocular muscle function

  • Skeletal Muscle
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Lactic acid is considered the end product of glycolysis and is a major cause of muscle fatigue. However, the lactate dehydrogenase (LDH) reaction is bidirectional: Lactate can be oxidized to pyruvate and used as a substrate for the Krebs cycle. Therefore, our hypothesis was that lactate sustains the contractile function of rat extraocular muscles during periods of increased activity. The study used extraocular and extensor digitorum longus (EDL) muscles from adult Sprague–Dawley rats to determine LDH isoform expression, total LDH activity, and contractile function in vitro. To evaluate the role of lactate on fatigue, we tested the effect of cinnamate, a blocker of lactate transport, and exogenous lactate on fatigue resistance. Cinnamate accelerated fatigue in the extraocular muscles: Endurance and residual force decreased significantly. Conversely, cinnamate did not affect the endurance or residual force of EDL muscles. Replacing glucose with exogenous lactate increased EDL fatigability but had no effect on the extraocular muscles. However, the extraocular muscles fatigued faster when exposed to exogenous lactate combined with cinnamate. The LDH-A and LDH-C isoforms were expressed at lower levels in extraocular muscle; LDH-B was equally abundant in the EDL and extraocular muscles. Total LDH activity in the extraocular muscles was only approximately 32% of the level in EDL. These results support the hypothesis that lactate sustains the contractile performance of the extraocular muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen DG, Lännergren J, Westerblad H (1995) Muscle cell function during prolonged activity: cellular mechanisms of fatigue. Exp Physiol 80:497–527

    PubMed  CAS  Google Scholar 

  2. Andrade FH, Anzueto A, Napier W, Levine S, Lawrence RA, Jenkinson SG, Maxwell LC (1998) Effects of selenium deficiency on diaphragmatic function after resistive loading. Acta Physiol Scand 162:141–148

    Article  PubMed  CAS  Google Scholar 

  3. Andrade FH, Hatala DA, McMullen CA (2004) Carbonic anhydrase isoform expression and functional role in rodent extraocular muscle. Pflugers Arch 448:547–551

    Article  PubMed  CAS  Google Scholar 

  4. Andrade FH, Merriam AP, Guo W, Cheng G, McMullen CA, Hayeβ K, van der Ven PFM, Porter JD (2003) Paradoxical absence of M lines and downregulation of creatine kinase in mouse extraocular muscle. J Appl Physiol 95:692–699

    PubMed  CAS  Google Scholar 

  5. Bergmeyer HU, Bernt E (1974) Lactate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, New York, pp 574–578

    Google Scholar 

  6. Boiteux A, Hess B (1981) Design of glycolysis. Philos Trans R Soc Lond B Biol Sci 293:5–22

    Article  PubMed  CAS  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  8. Brooks GA (2002) Lactate shuttles in nature. Biochem Soc Trans 30:258–264

    Article  PubMed  CAS  Google Scholar 

  9. Brooks GA (1998) Mammalian fuel utilization during sustained exercise. Comp Biochem Physiol B 120:89–107

    Article  PubMed  CAS  Google Scholar 

  10. Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE (1999) Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci U S A 96:1129–1134

    Article  PubMed  CAS  Google Scholar 

  11. Bruton JD, Lännergren J, Westerblad H (1998) Mechanisms underlying the slow recovery of force after fatigue: importance of intracellular calcium. Acta Physiol Scand 162:285–293

    Article  PubMed  CAS  Google Scholar 

  12. Clarke PD, Clift DL, Dooldeniya M, Burnett CAM, Curtin NA (1995) Effects of a-hydroxycinnamic acid on fatigue and recovery of isolated mouse muscle. J Muscle Res Cell Motil 16:611–617

    Article  PubMed  CAS  Google Scholar 

  13. Fischer MD, Gorospe JR, Felder E, Bogdanovich S, Pedrosa-Domellöf F, Ahima RS, Rubinstein NA, Hoffman EP, Khurana TS (2002) Expression profiling reveals metabolic and structural components of extraocular muscles. Physiol Genomics 9:71–84

    PubMed  CAS  Google Scholar 

  14. Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    PubMed  CAS  Google Scholar 

  15. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25:386–401

    Article  PubMed  CAS  Google Scholar 

  16. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    Article  PubMed  CAS  Google Scholar 

  17. Kemper WF, Lindstedt SL, Hartzler LK, Hicks JW, Conley KE (2001) Shaking up glycolysis: sustained, high lactate flux during aerobic rattling. Proc Natl Acad Sci U S A 98:723–728

    Article  PubMed  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{\Delta \Delta Ct}}\) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  19. Mayr R (1971) Structure and distribution of fibre types in the external eye muscles of the rat. Tissue Cell 3:433–462

    Article  PubMed  CAS  Google Scholar 

  20. McMullen CA, Hayeβ K, Andrade FH (2005) Fatigue resistance of rat extraocular muscles does not depend on creatine kinase activity. BMC Physiol 5:12

    Article  PubMed  CAS  Google Scholar 

  21. Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Andrade FH (2001) Extraocular muscle is defined by a fundamentally distinct gene expression profile. Proc Natl Acad Sci U S A 98:12062–12067

    Article  PubMed  CAS  Google Scholar 

  22. Reichmann H, Srihari T (1983) Enzyme activities, histochemistry and myosin light chain pattern in extraocular muscles of rabbit. Histochemistry 78:111–120

    Article  PubMed  CAS  Google Scholar 

  23. Spencer RF, Porter JD (1988) Structural organization of the extraocular muscles. In: Büttner-Ennever JA (ed) Neuroanatomy of the oculomotor system. Elsevier, New York, pp 33–79

    Google Scholar 

  24. Van Hall G (2000) Lactate as fuel for mitochondrial respiration. Acta Physiol Scand 168:643–656

    Article  PubMed  Google Scholar 

  25. Westerblad H, Allen DG, Bruton JD, Andrade FH, Lännergren J (1998) Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue. Acta Physiol Scand 162:253–260

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco H. Andrade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, F.H., McMullen, C.A. Lactate is a metabolic substrate that sustains extraocular muscle function. Pflugers Arch - Eur J Physiol 452, 102–108 (2006). https://doi.org/10.1007/s00424-005-0010-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-0010-0

Keywords

Navigation