Skip to main content

Advertisement

Log in

Inflammatory bowel disease: an impaired barrier disease

  • Review Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Background

The intestinal barrier is a delicate structure composed of a single layer of epithelial cells, the mucus, commensal bacteria, immune cells, and antibodies. Furthermore, a wealth of antimicrobial peptides (AMPs) can be found in the mucus and defend the mucosa. Different lines of investigations now point to a prominent pathophysiological role of defensins, an important family of AMPs, in the pathogenesis of inflammatory bowel disease and, particularly, in small intestinal Crohn’s disease.

Purpose

In this review, we introduce the different antimicrobial peptides of the intestinal mucosa and describe their function, their expression pattern along the gastrointestinal tract, and their spatial relationship to the mucus layer. We then focus on the alterations found in inflammatory bowel disease. Small intestinal Crohn’s disease (CD) is closely linked to defects in Paneth cells (specialized secretory epithelial cells at the bottom crypts) which secrete α-defensin human defensin (HD)-5 in huge quantities in healthy individuals. Decreased expression of these antimicrobial peptides is found in ileal CD, and single nucleotide polymorphisms with the highest linkage to CD affect genes involved in Paneth cell biology and defensin secretion. Additionally, antimicrobial peptides have a role in ulcerative colitis, where the depleted mucus layer cannot fulfill its crucial function of binding defensins and other AMPs to their proper site of action.

Conclusion

Inflammatory bowel disease arises when the mucosal barrier is compromised in its defense against challenges from the intestinal microbiota. In ileal CD, a strong association can be found between diminished expression or defective function of defensins and the advent of intestinal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guindi M, Riddell RH (2004) Indeterminate colitis. J Clin Pathol 57(12):1233–1244

    Article  PubMed  CAS  Google Scholar 

  2. Tollin M, Bergman P, Svenberg T, Jornvall H, Gudmundsson GH, Agerberth B (2003) Antimicrobial peptides in the first line defence of human colon mucosa. Peptides 24(4):523–530

    Article  PubMed  CAS  Google Scholar 

  3. Wehkamp J, Fellermann K, Herrlinger KR et al (2002) Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur J Gastroenterol Hepatol 14(7):745–752

    Article  PubMed  CAS  Google Scholar 

  4. Wehkamp J, Chu H, Shen B et al (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580(22):5344–5350

    Article  PubMed  CAS  Google Scholar 

  5. Sallenave JM (2002) Antimicrobial activity of antiproteinases. Biochem Soc Trans 30(2):111–115

    Article  PubMed  CAS  Google Scholar 

  6. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  PubMed  CAS  Google Scholar 

  7. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720

    Article  PubMed  CAS  Google Scholar 

  8. Shen B, Porter EM, Reynoso E et al (2005) Human defensin 5 expression in intestinal metaplasia of the upper gastrointestinal tract. J Clin Pathol 58(7):687–694

    Article  PubMed  CAS  Google Scholar 

  9. Ghosh D, Porter EM, Wilk DJ, Poles MA, Ganz T, Bevins CL (2000) Proteolytic cleavage of human intestinal defensin 5 (HD5) precursor by intestinal proteases. Gastroenterology 118(4):A839

    Article  Google Scholar 

  10. Ghosh D, Porter E, Shen B et al (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3(6):583–590

    Article  PubMed  CAS  Google Scholar 

  11. Chu H, Pazgier M, Jung G et al (2012) Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337(6093):477–481

    Article  PubMed  CAS  Google Scholar 

  12. Zhao C, Wang I, Lehrer RI (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396(2–3):319–322

    Article  PubMed  CAS  Google Scholar 

  13. Pazgier M, Prahl A, Hoover DM, Lubkowski J (2007) Studies of the biological properties of human beta-defensin 1. J Biol Chem 282(3):1819–1829

    Article  PubMed  CAS  Google Scholar 

  14. Papo N, Shai Y (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24(11):1693–1703

    Article  PubMed  CAS  Google Scholar 

  15. Sass V, Schneider T, Wilmes M et al (2010) Human beta-defensin 3 inhibits cell wall biosynthesis in staphylococci. Infect Immun 78(6):2793–2800

    Article  PubMed  CAS  Google Scholar 

  16. Schroeder BO, Wu Z, Nuding S et al (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423

    Article  PubMed  CAS  Google Scholar 

  17. Lehrer RI, Lu W (2012) alpha-Defensins in human innate immunity. Immunol Rev 245(1):84–112

    Article  PubMed  CAS  Google Scholar 

  18. Yang D, Chertov O, Bykovskaia SN et al (1999) β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  PubMed  CAS  Google Scholar 

  19. Rohrl J, Yang D, Oppenheim JJ, Hehlgans T (2010) Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol 184(12):6688–6694

    Article  PubMed  CAS  Google Scholar 

  20. Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14(4):421–426

    Article  PubMed  CAS  Google Scholar 

  21. Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111(3):273–281

    Article  PubMed  CAS  Google Scholar 

  22. de Leeuw E, Rajabi M, Zou G, Pazgier M, Lu W (2009) Selective arginines are important for the antibacterial activity and host cell interaction of human alpha-defensin 5. FEBS Lett 583(15):2507–2512

    Article  PubMed  CAS  Google Scholar 

  23. Kotarsky K, Sitnik KM, Stenstad H et al (2010) A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol 3(1):40–48

    Article  PubMed  CAS  Google Scholar 

  24. Peyrin-Biroulet L, Chamaillard M (2007) NOD2 and defensins: translating innate to adaptive immunity in Crohn’s disease. J Endotoxin Res 13(3):135–139

    Article  PubMed  CAS  Google Scholar 

  25. Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7(2):179–196

    PubMed  CAS  Google Scholar 

  26. Nevalainen TJ, Graham GG, Scott KF (2008) Antibacterial actions of secreted phospholipases A2. Review. Biochim Biophys Acta 1781(1–2):1–9

    PubMed  CAS  Google Scholar 

  27. Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313(5790):1126–1130

    Article  PubMed  CAS  Google Scholar 

  28. Medveczky P, Szmola R, Sahin-Toth M (2009) Proteolytic activation of human pancreatitis-associated protein is required for peptidoglycan binding and bacterial aggregation. Biochem J 420(2):335–343

    Article  PubMed  CAS  Google Scholar 

  29. Canny G, Cario E, Lennartsson A et al (2006) Functional and biochemical characterization of epithelial bactericidal/permeability-increasing protein. Am J Physiol Gastrointest Liver Physiol 290(3):G557–G567

    Article  PubMed  CAS  Google Scholar 

  30. Canny G, Levy O, Furuta GT et al (2002) Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci U S A 99(6):3902–3907

    Article  PubMed  CAS  Google Scholar 

  31. Jager S, Stange EF, Wehkamp J (2010) Antimicrobial peptides in gastrointestinal inflammation. Int J Inflamm 2010:910283

    Google Scholar 

  32. Stange EF (2009) For bugs in bile: the times they are a-changin’. Gastroenterology 136(4):1164–1167

    Article  PubMed  CAS  Google Scholar 

  33. Johansson ME, Ambort D, Pelaseyed T et al (2011) Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68(22):3635–3641

    Article  PubMed  CAS  Google Scholar 

  34. Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108(Suppl 1):4659–4665

    Article  PubMed  CAS  Google Scholar 

  35. Subramani DB, Johansson ME, Dahlen G, Hansson GC (2010) Lactobacillus and Bifidobacterium species do not secrete protease that cleaves the MUC2 mucin which organises the colon mucus. Benefic Microbes 1(4):343–350

    Article  CAS  Google Scholar 

  36. Meyer-Hoffert U, Hornef MW, Henriques-Normark B et al (2008) Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57(6):764–771

    Article  PubMed  CAS  Google Scholar 

  37. Vaishnava S, Yamamoto M, Severson KM et al (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334(6053):255–258

    Article  PubMed  CAS  Google Scholar 

  38. Satsangi J, Silverberg MS, Vermeire S, Colombel JF (2006) The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 55(6):749–753

    Article  PubMed  CAS  Google Scholar 

  39. Inoue N, Tamura K, Kinouchi Y et al (2002) Lack of common NOD2 variants in Japanese patients with Crohn's disease. Gastroenterology 123(1):86–91

    Article  PubMed  CAS  Google Scholar 

  40. Hoffmann JC, Preiss JC, Autschbach F et al (2008) Clinical practice guideline on diagnosis and treatment of Crohn’s disease. Z Gastroenterol 46(9):1094–1146

    Article  PubMed  CAS  Google Scholar 

  41. Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42(12):1118–1125

    Article  PubMed  CAS  Google Scholar 

  42. Anderson CA, Boucher G, Lees CW et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43(3):246–252

    Article  PubMed  CAS  Google Scholar 

  43. Sandow MJ, Whitehead R (1979) The Paneth cell. Gut 20(5):420–431

    Article  PubMed  CAS  Google Scholar 

  44. Wehkamp J, Salzman NH, Porter E et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A 102(50):18129–18134

    Article  PubMed  CAS  Google Scholar 

  45. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105(52):20858–20863

    Article  PubMed  CAS  Google Scholar 

  46. Petnicki-Ocwieja T, Hrncir T, Liu YJ et al (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A 106(37):15813–15818

    Article  PubMed  CAS  Google Scholar 

  47. Salzman NH, Hung K, Haribhai D et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–83

    Article  PubMed  CAS  Google Scholar 

  48. Cuthbert AP, Fisher SA, Mirza MM et al (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122(4):867–874

    Article  PubMed  CAS  Google Scholar 

  49. Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962

    Article  PubMed  CAS  Google Scholar 

  50. Lala S, Ogura Y, Osborne C et al (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125(1):47–57

    Article  PubMed  CAS  Google Scholar 

  51. Wilson CL, Ouellette AJ, Satchell DP et al (1999) Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117

    Article  PubMed  CAS  Google Scholar 

  52. Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL (2008) Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 57(7):903–910

    Article  PubMed  CAS  Google Scholar 

  53. Elphick D, Liddell S, Mahida YR (2008) Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am J Pathol 172(3):702–713

    Article  PubMed  CAS  Google Scholar 

  54. Rumio C, Besusso D, Palazzo M et al (2004) Degranulation of paneth cells via toll-like receptor 9. Am J Pathol 165(2):373–381

    Article  PubMed  CAS  Google Scholar 

  55. Hampe J, Cuthbert A, Croucher PJ et al (2001) Association between insertion mutation in NOD2 gene and Crohn’s di German and British populations. Lancet 357(9272):1925–1928, 2001; 357:1925–1928

    Article  PubMed  CAS  Google Scholar 

  56. Cadwell K, Liu JY, Brown SL et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263

    Article  PubMed  CAS  Google Scholar 

  57. Thachil E, Hugot JP, Arbeille B et al (2012) Abnormal activation of autophagy-induced crinophagy in paneth cells from patients with Crohn’s disease. Gastroenterology 142(5):1097–1099

    Article  PubMed  Google Scholar 

  58. Kaser A, Lee AH, Franke A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756

    Article  PubMed  CAS  Google Scholar 

  59. van Es JH, Jay P, Gregorieff A et al (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7(4):381–386

    Article  PubMed  CAS  Google Scholar 

  60. Wehkamp J, Wang G, Kubler I et al (2007) The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol 179(5):3109–3118

    PubMed  CAS  Google Scholar 

  61. Koslowski MJ, Kubler I, Chamaillard M et al (2009) Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PLoS One 4(2):e4496

    Article  PubMed  CAS  Google Scholar 

  62. Koslowski MJ, Teltschik Z, Beisner J et al (2012) Association of a functional variant in the Wnt co-receptor LRP6 with early onset ileal Crohn’s disease. PLoS Genet 8(2):e1002523

    Article  PubMed  CAS  Google Scholar 

  63. Ayabe T, Wulff H, Darmoul D, Cahalan MD, Chandy KG, Ouellette AJ (2002) Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2+−activated, intermediate conductance potassium channel. J Biol Chem 277(5):3793–3800

    Article  PubMed  CAS  Google Scholar 

  64. Simms LA, Doecke JD, Roberts RL et al (2010) KCNN4 gene variant is associated with ileal Crohn’s disease in the Australian and New Zealand population. Am J Gastroenterol 105(10):2209–2217

    Article  PubMed  CAS  Google Scholar 

  65. Gunther C, Martini E, Wittkopf N et al (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477(7364):335–339

    Article  PubMed  CAS  Google Scholar 

  66. Wehkamp J, Stange EF (2010) Paneth’s disease. J Crohns Colitis 4(5):523–531

    Article  PubMed  Google Scholar 

  67. Hollox EJ, Barber JC, Brookes AJ, Armour JA (2008) Defensins and the dynamic genome: what we can learn from structural variation at human chromosome band 8p23.1. Genome Res 18(11):1686–1697

    Article  PubMed  CAS  Google Scholar 

  68. Kocsis AK, Lakatos PL, Somogyvari F et al (2008) Association of beta-defensin 1 single nucleotide polymorphisms with Crohn’s disease. Scand J Gastroenterol 43(3):299–307

    Article  PubMed  CAS  Google Scholar 

  69. Peyrin-Biroulet L, Beisner J, Wang G et al (2010) Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci U S A 107(19):8772–8777

    Article  PubMed  CAS  Google Scholar 

  70. Wehkamp J, Harder J, Weichenthal M et al (2003) Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 9(4):215–223

    Article  PubMed  Google Scholar 

  71. Maurice MM, Nakamura H, Gringhuis S et al (1999) Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 42(11):2430–2439

    Article  PubMed  CAS  Google Scholar 

  72. Zilbauer M, Dorrell N, Boughan PK et al (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73(11):7281–7289

    Article  PubMed  CAS  Google Scholar 

  73. Mondel M, Schroeder BO, Zimmermann K et al (2008) Probiotic E. coli treatment mediates antimicrobial human beta-defensin synthesis and fecal excretion in humans. Mucosal Immunol 2(2):166–172

    Article  PubMed  CAS  Google Scholar 

  74. Wehkamp J, Harder J, Wehkamp K et al (2004) NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 72(10):5750–5758

    Article  PubMed  CAS  Google Scholar 

  75. Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9(8):556–567

    Article  PubMed  CAS  Google Scholar 

  76. Aldhous MC, Noble CL, Satsangi J (2009) Dysregulation of human beta-defensin-2 protein in inflammatory bowel disease. PLoS One 4(7):e6285

    Article  PubMed  CAS  Google Scholar 

  77. Nuding S, Fellermann K, Wehkamp J, Stange EF (2007) Reduced mucosal antimicrobial activity in Crohn’s disease of the colon. Gut 56(9):1240–1247

    Article  PubMed  Google Scholar 

  78. Fellermann K, Stange DE, Schaeffeler E et al (2006) A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 79(3):439–448

    Article  PubMed  CAS  Google Scholar 

  79. Bentley RW, Pearson J, Gearry RB et al (2009) Association of higher DEFB4 genomic copy number with Crohn’s disease. Am J Gastroenterol 105(2):354–359

    Article  PubMed  CAS  Google Scholar 

  80. Hollox EJ, Armour JA, Barber JC (2003) Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 73(3):591–600

    Article  PubMed  CAS  Google Scholar 

  81. Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281(4):2005–2011

    Article  PubMed  CAS  Google Scholar 

  82. Mastroianni JR, Ouellette AJ (2009) Alpha-defensins in enteric innate immunity: functional Paneth cell alpha-defensins in mouse colonic lumen. J Biol Chem 284(41):27848–27856

    Article  PubMed  CAS  Google Scholar 

  83. Cunliffe RN, Rose FRAJ, Keyte J, Abberley L, Chan WC, Mahida YR (2001) Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some viloous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 48:176–185

    Article  PubMed  CAS  Google Scholar 

  84. Langhorst J, Junge A, Rueffer A et al (2009) Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am J Gastroenterol 104(2):404–410

    Article  PubMed  CAS  Google Scholar 

  85. Hiemstra PS (2002) Novel roles of protease inhibitors in infection and inflammation. Biochem Soc Trans 30(2):116–120

    Article  PubMed  CAS  Google Scholar 

  86. Schmid M, Fellermann K, Fritz P, Wiedow O, Stange EF, Wehkamp J (2007) Attenuated induction of epithelial and leukocyte serine antiproteases elafin and secretory leukocyte protease inhibitor in Crohn’s disease. J Leukoc Biol. doi:10.1189/jlb.0906581

  87. Schauber J, Rieger D, Weiler F et al (2006) Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 18(6):615–621

    Article  PubMed  CAS  Google Scholar 

  88. Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF (2005) Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174(8):4901–4907

    PubMed  CAS  Google Scholar 

  89. Dignass A, Preiss JC, Aust DE et al (2011) Updated German guideline on diagnosis and treatment of ulcerative colitis, 2011. Z Gastroenterol 49(9):1276–1341

    Article  PubMed  CAS  Google Scholar 

  90. Kiehne K, Brunke G, Meyer D, Harder J, Herzig KH (2005) Oesophageal defensin expression during Candida infection and reflux disease. Scand J Gastroenterol 40(5):501–507

    Article  PubMed  CAS  Google Scholar 

  91. Scarpa M, Grillo A, Scarpa M et al (2012) Innate immune environment in ileal pouch mucosa: alpha5 defensin up-regulation as predictor of chronic/relapsing pouchitis. J Gastrointest Surg 16(1):188–201

    Article  PubMed  Google Scholar 

  92. Sartor RB (2005) Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut 54(7):896–898

    Article  PubMed  Google Scholar 

  93. Khan KJ, Ullman TA, Ford AC et al (2011) Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol 106(4):661–673

    Article  PubMed  CAS  Google Scholar 

  94. Danese S (2012) New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 61(6):918–932

    Article  PubMed  CAS  Google Scholar 

  95. Summers RW, Elliott DE, Urban JF Jr, Thompson R, Weinstock JV (2005) Trichuris suis therapy in Crohn’s disease. Gut 54(1):87–90

    Article  PubMed  CAS  Google Scholar 

  96. Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128(4):825–832

    Article  PubMed  Google Scholar 

  97. Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296(5567):490–494

    Article  PubMed  CAS  Google Scholar 

  98. Doetze A, Satoguina J, Burchard G et al (2000) Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol 12(5):623–630

    Article  PubMed  CAS  Google Scholar 

  99. Hunter MM, Wang A, McKay DM (2007) Helminth infection enhances disease in a murine TH2 model of colitis. Gastroenterology 132(4):1320–1330

    Article  PubMed  CAS  Google Scholar 

  100. Bager P, Arnved J, Ronborg S et al (2010) Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J Allergy Clin Immunol 125(1):123–130

    Article  PubMed  Google Scholar 

  101. Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H, Stahle M (2005) Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Investig Dermatol 124(5):1080–1082

    Article  PubMed  CAS  Google Scholar 

  102. Wang TT, Dabbas B, Laperriere D et al (2010) Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem 285(4):2227–2231

    Article  PubMed  CAS  Google Scholar 

  103. Steinmann J, Halldorsson S, Agerberth B, Gudmundsson GH (2009) Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 53(12):5127–5133

    Article  PubMed  CAS  Google Scholar 

  104. Schlee M, Harder J, Koten B, Stange EF, Wehkamp J, Fellermann K (2008) Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 151(3):528–535

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Wehkamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäger, S., Stange, E.F. & Wehkamp, J. Inflammatory bowel disease: an impaired barrier disease. Langenbecks Arch Surg 398, 1–12 (2013). https://doi.org/10.1007/s00423-012-1030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-012-1030-9

Keywords

Navigation