Skip to main content
Log in

Effects of exercise in normobaric hypoxia on hemodynamics during muscle metaboreflex activation in normoxia

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Little is known about the cardiovascular effects of the transition from exercise in hypoxia (EH) to normoxia. This investigation aimed to assess hemodynamics during the metaboreflex elicited in normoxia after EH.

Methods

Ten trained athletes (four females and six males, age 35.6 ± 8.4 years) completed a cardiopulmonary test to determine the workload at anaerobic threshold (AT). On separate days, participants performed three randomly assigned exercise sessions (10 min pedalling at 80% of AT): (1) one in normoxia (EN); (2) one in normobaric hypoxia with FiO2 15.5% (EH15.5%); and (3) one in normobaric hypoxia with FiO2 13.5% (EH13.5%). After each session, the following protocol was randomly assigned: either (1) post-exercise muscle ischemia after cycling for 3 min, to study the metaboreflex, or (2) a control exercise recovery (CER) session, without any metaboreflex stimulation.

Results

The main result were that both EH15.5% and EH13.5% impaired (p < 0.05) the ventricular filling rate response during the metaboreflex (− 18 ± 32 and − 20 ± 27 ml s−1), when compared to EN (+ 29 ± 32 ml s−1), thereby causing a reduction in stroke volume response (− 9.1 ± 3.2, − 10.6 ± 8.7, and + 5 ± 5.7 ml for EH15.5%, EH13.5% and EN test, respectively, p < 0.05). Moreover, systemic vascular resistance was increased after the EH15.5% and the EH13.5% in comparison with the EN test.

Conclusions

These data demonstrate that moderate exercise in hypoxia impairs the capacity to enhance venous return during the metaboreflex stimulated in normoxia. Overall, there is a functional shift from a flow to vasoconstriction-mediated mechanism for maintaining the target blood pressure during the metaboreflex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AT:

Anaerobic threshold

CER:

Control exercise recovery

CO:

Cardiac output

COX:

Cerebral tissue oxygenation

CPX:

Cardiopulmonary test

DBP:

Diastolic blood pressure

DT:

Diastolic time

EH:

Exercise in acute hypoxia

EN:

Exercise in normoxia

HR:

Heart rate

MAP:

Mean blood pressure

NIRS:

Near-infrared spectroscopy

NO:

Nitric oxide

PEMI:

Post-exercise muscle ischemia

PEP:

Pre-ejection period

SBP:

Systolic blood pressure

SNA:

Sympathetic nervous activity

SO2 :

Peripheral blood O2 saturation

SV/VET:

Stroke volume/ventricular ejection time ratio

SV:

Stroke volume

SVR:

Systemic vascular resistance

VER:

Mean ventricular ejection rate

VET:

Left ventricular ejection time

VFR:

Ventricular filling rate

\(\dot{V}{\text{CO}}_{2}\) :

Carbon dioxide production

\(\dot{V}{\text{O}}_{{2\max}}\) :

Maximum oxygen uptake

W max :

Maximum workload

Z0:

Thoracic impedance

References

  • Amann M, Runnels S, Morgan DE, Trinity JD, Fjeldstad AS, Walter Wray D, Reese VR, Richardson RS (2011) On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans. J Physiol 589:3855–3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustyniak RA, Collins HL, Ansorge EJ, Rossi NF, O’Leary DS (2001) Severe exercise alters the strength and mechanisms of the muscle metaboreflex. Am J Physiol (Heart Circ Physiol) 280:H1645–H1652

    Article  CAS  Google Scholar 

  • Bastos BG, Williamson JW, Harrelson T, Nôbrega ACL (2000) Left ventricular volumes and hemodynamic responses to postexercise ischemia in healthy humans. Med Sci Sports Exerc 32: 1114–1118

    Article  CAS  PubMed  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    Article  CAS  PubMed  Google Scholar 

  • Bernstein DP (1986) A new stroke volume equation for Thoracic Electrical Bioimpedance: theory and rationale. Crit Care Med 14:904–909

    Article  CAS  PubMed  Google Scholar 

  • Bourdillon N, Saugy J, Schmitt L, Rupp T, Yazdani S, Vesin JM, Millet GP (2017) Acute and chronic changes in baroreflex sensitivity in hypobaric vs. normobaric hypoxia. Eur J Appl Physiol 117:2401–2407

    Article  PubMed  Google Scholar 

  • Casey DP, Joyner MJ (2011) Local control of skeletal muscle blood flow during exercise: influence of available oxygen. J Appl Physiol 111:1527–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey DP, Joyner MJ (2012) Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand. J Physiol 590:6321–6326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisafulli A (2017) The impact of cardiovascular diseases on cardiovascular regulation during exercise in humans: studies on metaboreflex activation elicited by the post-exercise muscle ischemia method. Curr Cardiol Rev 13:293–300

    Article  PubMed  PubMed Central  Google Scholar 

  • Crisafulli A, Salis E, Tocco F, Melis F, Milia R, Pittau G, Caria MA, Solinas R, Meloni L, Pagliaro P, Concu A (2007) Impaired central hemodynamic response and exaggerated vasoconstriction during muscle metaboreflex activation in heart failure patients. Am J Physiol (Heart Circ Physiol) 292:H2988–H2996

    Article  CAS  Google Scholar 

  • Crisafulli A, Milia R, Lobina A, Caddeo M, Tocco F, Concu A, Melis F (2008) Hemodynamic effect of metaboreflex activation in men after running above and below the velocity of the anaerobic threshold. Exp Physiol 93:447–457

    Article  PubMed  Google Scholar 

  • Crisafulli A, Milia R, Vitelli S, Caddeo M, Tocco F, Melis F, Concu A (2009) Hemodynamic responses to metaboreflex activation: insights from spinal cord-injured humans. Eur J Appl Physiol 106:525–533

    Article  PubMed  Google Scholar 

  • Crisafulli A, Piras F, Filippi M, Piredda C, Chiappori P, Melis F, Milia R, Tocco F, Concu A (2011) Role of heart rate and stroke volume during muscle metaboreflex-induced cardiac output increase: differences between activation during and after exercise. J Physiol Sci 61:385–394

    Article  PubMed  Google Scholar 

  • Crisafulli A, Tocco F, Milia R, Angius L, Pinna M, Olla S, Roberto S, Marongiu E, Porcu M, Concu A (2013) Progressive improvement in hemodynamic response to muscle metaboreflex in heart transplant recipients. J Appl Physiol 114:421–427

    Article  CAS  PubMed  Google Scholar 

  • Crisafulli A, Marongiu E, Ogoh S (2015) Cardiovascular reflexes activity and their interaction during exercise. Biomed Res Int 2015:394183. https://doi.org/10.1155/2015/394183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinenno FA (2016) Skeletal muscle vasodilation during systemic hypoxia in humans. J Appl Physiol 120:216–225

    Article  CAS  PubMed  Google Scholar 

  • Fisher JP, Adlan AM, Shantsila A, Secher F, Sørensen H, Secher NH (2013) Muscle metaboreflex and autonomic regulation of heart rate in humans. J Physiol 591:3777–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gledhill N, Cox D, Jamnik R (1994) Endurance athletes’ stroke volume does not plateau: major advantage is diastolic function. Med Sci Sports Exerc 26:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Gujic M, Laude D, Houssière A, Beloka S, Argacha JF, Adamopoulos D, Xhaët O, Elghozi JL, van de Borne P (2007) Differential effects of metaboreceptor and chemoreceptor activation on sympathetic and cardiac baroreflex control following exercise in hypoxia in human. J Physiol 585:165–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houssiere A, Najem B, Ciarka A, Velez-Roa S, Naeije R, van de Borne P (2005) Chemoreflex and metaboreflex control during static hypoxic exercise. Am J Physiol (Heart Circ Physiol) 288(4):H1724–H1729

    Article  CAS  Google Scholar 

  • Houssiere A, Najem B, Pathak A, Xhaët O, Naeije R, Van De Borne P (2006) Chemoreflex and metaboreflex responses to static hypoxic exercise in aging humans. Med Sci Sports Exerc 38(2):305–312

    Article  PubMed  Google Scholar 

  • Howley ET, Bassett DR, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301

    Article  CAS  PubMed  Google Scholar 

  • Iellamo F, Pizzinelli P, Massaro M, Raimondi G, Peruzzi G, Legramante JM (1999) Muscle metaboreflex contribution to sinus node regulation during static exercise. Circulation 100:27–32

    Article  CAS  PubMed  Google Scholar 

  • Kara T, Narkiewicz K, Somers VK (2003) Chemoreflexes–physiology and clinical implications. Acta Physiol Scand 177: 377–384

    Article  CAS  PubMed  Google Scholar 

  • Koole MAC, Aerts A, Praet J, Franken P, Dendale P, Block P (2000) Venous pooling during nitrate-stimulated tilt testing in patients with vasovagal syncope. Europace 2:343–345

    Article  CAS  PubMed  Google Scholar 

  • Magnani S, Roberto S, Sainas G, Milia R, Palazzolo G, Cugusi L, Pinna V, Doneddu A, Hosseini Kakhak SA, Tocco F, Mercuro G, Crisafulli A (2018) Metaboreflex-mediated hemodynamic abnormalities in individuals with coronary artery disease without overt signs or symptoms of heart failure. Am J Physiol (Heart Circ Physiol) 314(3):H452–H463

    Article  CAS  Google Scholar 

  • Marongiu E, Crisafulli A (2014) Cardioprotection acquired through exercise: the role of ischemic preconditioning. Curr Cardiol Rev 10:336–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Marongiu E, Piepoli MF, Milia R, Angius L, Pinna M, Bassareo P, Roberto S, Tocco F, Concu A, Crisafulli A (2013) Effects of acute vasodilation on the hemodynamic response to muscle metaboreflex. Am J Physiol (Heart Circ Physiol) 305:H1387–H1396

    Article  CAS  Google Scholar 

  • Marshall JM (2015) Interactions between local dilator and sympathetic vasoconstrictor influences in skeletal muscle in acute and chronic hypoxia. Exp Physiol 100:1400–1411

    Article  CAS  PubMed  Google Scholar 

  • Milia R, Roberto S, Mulliri G, Loi A, Marcelli M, Sainas G, Milia N, Marongiu E, Crisafulli A (2015) Effect of aging on hemodynamic response to metaboreflex activation. Eur J Appl Physiol 115:1693–1703

    Article  PubMed  Google Scholar 

  • Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP (2010) Combining hypoxic methods for peak performance. Sports Med 40:1–25

    Article  PubMed  Google Scholar 

  • Millet GP, Debevec T, Brocherie F, Malatesta D, Girard O (2016) Therapeutic use of exercising in hypoxia: promises and limitations. Front Physiol 10:7:224

    Google Scholar 

  • Moran D, Epstein Y, Keren G, Laor A, Sherez J, Y Shapir (1995) Calculation of mean arterial pressure during exercise as a function of heart rate. Appl Human Sci 14:293–295

    Article  CAS  PubMed  Google Scholar 

  • Mulliri G, Sainas G, Magnani S, Palazzolo G, Milia N, Orrù A, Roberto S, Marongiu E, Milia R, Crisafulli A (2016) Ischemic preconditioning reduces hemodynamic response during metaboreflex activation. Am J Physiol (Regul Integr Comp Physiol) 310:R777–R787

    Article  Google Scholar 

  • Navarrete-Opazo A, Mitchell GS (2014) Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol (Regul Integr Comp Physiol) 307:R1181–R1119

    Article  CAS  Google Scholar 

  • Nishiyasu T, Nobusuke T, Morimoto K, Nishiyasu M, Yamaguchi Y, Murakami N (1994) Enhancement of parasympathetic cardiac activity during activation of muscle metaboreflex in humans. J Appl Physiol 77:2778–2783

    Article  CAS  PubMed  Google Scholar 

  • Nóbrega ACL, O’Leary DS, Silva BM, Marongiu E, Piepoli MF, Crisafulli A (2014) Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. Biomed Res Int. https://doi.org/10.1155/2014/478965

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Leary DS, Augustyniak RA (1998) Muscle metaboreflex increases ventricular performance in conscious dogs. Am J Physiol (Heart Circ Physiol) 275:H220–H224

    Article  Google Scholar 

  • Roberto S, Marongiu E, Pinna M, Angius L, Olla S, Bassareo P, Tocco F, Concu A, Milia R, Crisafulli A (2012) Altered hemodynamics during muscle metaboreflex in young, type 1 diabetes patients. J Appl Physiol 113:1323–1331

    Article  PubMed  Google Scholar 

  • Roberto S, Mulliri G, Milia R, Solinas R, Pinna V, Sainas G, Piepoli MF, Crisafulli A (2017) Hemodynamic response to muscle reflex is abnormal in patients with heart failure with preserved ejection fraction. J Appl Physiol 22(2):376–385

    Article  Google Scholar 

  • Rowell LB, Blackmon JR (1987) Human cardiovascular adjustments to acute hypoxaemia. Clin Physiol 7:349–376

    Article  CAS  PubMed  Google Scholar 

  • Rowell LB, Hermansen L, Blackmon JR (1976) Human cardiovascular and respiratory responses to graded muscle ischemia. J Appl Physiol 41:693–701

    Article  CAS  PubMed  Google Scholar 

  • Sainas G, Marongiu E, Milia R, Palazzolo G, Ibba G, Roberto S, Ghiani G, Tocco F, Crisafulli A (2016) Mean blood pressure assessment during post-exercise: results from two different methods of calculation. J Sports Sci Med 15:424–433

    PubMed  PubMed Central  Google Scholar 

  • Sala-Mercado JA, Hammond RL, Kim JK, Rossi NF, Stephenson LW, O’Leary DS (2006) Muscle metaboreflex control of ventricular contractility during dynamic exercise. Am J Physiol (Heart Circ Physiol) 290:H751–H757

    Article  CAS  Google Scholar 

  • Sanna I, Pinna V, Milia R, Roberto S, Olla S, Mulliri G, Crisafulli A (2017) Hemodynamic responses during enduro-motorcycling performance. Front Physiol 8:1062. https://doi.org/10.3389/fphys.2017.01062

    Article  PubMed  PubMed Central  Google Scholar 

  • Schega L, Peter B, Brigadski T, Leßmann V, Isermann B, Hamacher D, Törpel A (2016) Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. J Sci Med Sport 19:941–945

    Article  PubMed  Google Scholar 

  • Scott AC, Wensel R, Davos CH, Kemp M, Kaczmarek A, Hooper J, Coats AJS, Piepoli MF (2002) Chemical mediators of the muscle ergoreflex in chronic heart failure: a putative role for prostaglandins in reflex ventilatory control. Circulation 106:214–220

    Article  CAS  PubMed  Google Scholar 

  • Sheriff DD, Augstyniak RA, O’Leary DS (1998) Muscle chemoreflex-induced increases in right atrial pressure. Am J Physiol (Heart Circ Physiol) 275:H767–H775

    Article  CAS  Google Scholar 

  • Shoemaker JK, Mattar L, Kerbeci P, Trotter S, Arbeille P, Hughson RL (2005) WISE 2005: stroke volume changes contribute to the pressor response during ischemic handgrip exercise in women. J Appl Physiol 103:228–233

    Article  Google Scholar 

  • Siebenmann C, Lundby C (2015) Regulation of cardiac output in hypoxia. Scand J Med Sci Sports 25(Suppl 4):53–59

    Article  PubMed  Google Scholar 

  • Strange S, Secher NH, Pawelczyk JA, Karpakka J, Christensen NJ, Mitchell JH, Saltin B (1993) Neural control of cardiovascular responses and of ventilation during dynamic exercise in man. J Physiol 470:693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai YW, Yang YR, Sun SH, Liang KC, Wang RY (2013) Post ischemia intermittent hypoxia induces hippocampal neurogenesis and synaptic alterations and alleviates long-term memory impairment. J Cereb Blood Flow Metab 33(5):764–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner PD (2000) Reduced maximal cardiac output at altitude—mechanisms and significance. Respir Physiol 120: 1–11

    Article  CAS  PubMed  Google Scholar 

  • Wilber RL (2001) Current trends in altitude training. Sports Med 31:249–265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the University of Cagliari and the Italian Ministry of Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

GM, AD and AC: conceived and designed research, conducted experiments, analysed data, and wrote the manuscript. GS, SM, SR, GG, MM, and VP: conducted experiments and analysed data. SJW and GPM: conceived and designed research, analysed data, and wrote the manuscript.

Corresponding author

Correspondence to Antonio Crisafulli.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Ethical approval

All the procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards The study was approved by the ethics committee of the University of Cagliari.

Additional information

Communicated by I. Mark Olfert.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulliri, G., Sainas, G., Magnani, S. et al. Effects of exercise in normobaric hypoxia on hemodynamics during muscle metaboreflex activation in normoxia. Eur J Appl Physiol 119, 1137–1148 (2019). https://doi.org/10.1007/s00421-019-04103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-019-04103-y

Keywords

Navigation