Skip to main content
Log in

Effects of high-altitude exposure on supraspinal fatigue and corticospinal excitability and inhibition

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

While acute hypoxic exposure enhances exercise-induced central fatigue and can alter corticospinal excitability and inhibition, the effect of prolonged hypoxic exposure on these parameters remains to be clarified. We hypothesized that 5 days of altitude exposure would (i) normalize exercise-induced supraspinal fatigue during isolated muscle exercise to sea level (SL) values and (ii) increase corticospinal excitability and inhibition.

Methods

Eleven male subjects performed intermittent isometric elbow flexions at 50% of maximal voluntary contraction to task failure at SL and after 1 (D1) and 5 (D5) days at 4350 m. Transcranial magnetic stimulation and peripheral electrical stimulation were used to assess supraspinal and peripheral fatigues. Pre-frontal cortex and biceps brachii oxygenation was monitored by near-infrared spectroscopy.

Results

Exercise duration was not statistically different between SL (1095 ± 562 s), D1 (1132 ± 516 s), and D5 (1440 ± 689 s). No significant differences were found between the three experimental conditions in maximal voluntary activation declines at task failure (SL −16.8 ± 9.5%; D1 −25.5 ± 11.2%; D5 −21.8 ± 7.0%; p > 0.05). Exercise-induced peripheral fatigue was larger at D5 versus SL (100 Hz doublet at task failure: −58.8 ± 16.6 versus −41.8 ± 20.1%; p < 0.05). Corticospinal excitability at 50% maximal voluntary contraction was lower at D5 versus SL (brachioradialis p < 0.05, biceps brachii p = 0.055). Cortical silent periods were shorter at SL versus D1 and D5 (p < 0.05).

Conclusions

The present results show similar patterns of supraspinal fatigue development during isometric elbow flexions at SL and after 1 and 5 days at high altitude, despite larger amount of peripheral fatigue at D5, lowered corticospinal excitability and enhanced corticospinal inhibition at altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BB:

Biceps brachii

BR:

Brachioradialis

CSP:

Cortical silent period

D1:

After 1 day of high-altitude exposure

D5:

After 5 days of high-altitude exposure

Db10:

Paired stimulation at 10 Hz

Db100:

Paired stimulation at 100 Hz

Db10:100:

Ratio of Db10 to Db100

EMG:

Electromyography

ERT:

Estimated resting twitch

FiO2 :

Fraction of inspired oxygen

HbO2 :

Oxyhaemoglobin

HbTot:

Total haemoglobin

HHb:

Deoxyhaemoglobin

MEP:

Motor evoked potential

MEP·Mmax−1 :

Motor evoked potential to maximal M-wave ratio

MES:

Muscle electrical stimulation

Mmax:

Maximal M-wave

MVC:

Maximal voluntary contraction

NES:

Nerve electrical stimulation

NIRS:

Near-infrared spectroscopy

PetCO2 :

End-tidal CO2 partial pressure

RPE:

Rate of perceived exertion

SIT:

Superimposed twitch

SL:

Sea level

SpO2 :

Arterial oxygen saturation

TB:

Triceps brachii

TMS:

Transcranial magnetic stimulation

VAMES :

Voluntary activation assessed by muscle electrical stimulation

VATMS :

Voluntary activation assessed by transcranial magnetic stimulation

References

  • Amann M, Romer LM, Subudhi AW, Pegelow DF, Dempsey JA (2007) Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Physiol 581:389–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 587:271–283

    Article  CAS  PubMed  Google Scholar 

  • Amann M, Goodall S, Twomey R, Subudhi AW, Lovering AT, Roach RC (2013) AltitudeOmics: on the consequences of high-altitude acclimatization for the development of fatigue during locomotor exercise in humans. J Appl Physiol (1985) 115:634–642

    Article  CAS  Google Scholar 

  • Bachasson D, Temesi J, Gruet M, Yokoyama K, Rupp T, Millet GY, Verges S (2016) Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation. Neuroscience 314:125–133

    Article  CAS  PubMed  Google Scholar 

  • Boland MR, Spigelman T, Uhl TL (2008) The function of brachioradialis. J Hand Surg Am 33:1853–1859

    Article  PubMed  Google Scholar 

  • Calbet JA, Radegran G, Boushel R, Saltin B (2009) On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. J Physiol 587:477–490

    Article  CAS  PubMed  Google Scholar 

  • Cummins TR, Jiang C, Haddad GG (1993) Human neocortical excitability is decreased during anoxia via sodium channel modulation. J Clin Invest 91:608–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    CAS  PubMed  Google Scholar 

  • Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 490(Pt 2):529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson GE, Duffy TE (1981) Impaired synthesis of acetylcholine by mild hypoxic hypoxia or nitrous oxide. J Neurochem 36:28–33

    Article  CAS  PubMed  Google Scholar 

  • Goodall S, Ross EZ, Romer LM (2010) Effect of graded hypoxia on supraspinal contributions to fatigue with unilateral knee-extensor contractions. J Appl Physiol 109:10

    Article  Google Scholar 

  • Goodall S, Gonzalez-Alonso J, Ali L, Ross EZ, Romer LM (2012) Supraspinal fatigue after normoxic and hypoxic exercise in humans. J Physiol 590:2767–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodall S, Twomey R, Amann M, Ross EZ, Lovering AT, Romer LM, Subudhi AW, Roach RC (2014) AltitudeOmics: exercise-induced supraspinal fatigue is attenuated in healthy humans after acclimatization to high altitude. Acta Physiol (Oxf) 210:875–888

    Article  CAS  Google Scholar 

  • Grippo A, Carrai R, Romagnoli I, Lanini B, Bianchi R, Gigliotti F, Scano G (2005) Cortical excitability in obstructive sleep apnea syndrome: transcranial magnetic stimulation study. Sleep 28:1547–1553

    PubMed  Google Scholar 

  • Gruet M, Temesi J, Rupp T, Levy P, Verges S, Millet GY (2014) Dynamics of corticospinal changes during and after high-intensity quadriceps exercise. Exp Physiol 99:1053–1064

    Article  PubMed  Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148

    CAS  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374

    Article  CAS  PubMed  Google Scholar 

  • Hunter SK, Butler JE, Todd G, Gandevia SC, Taylor JL (2006) Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. J Appl Physiol (1985) 101:1036–1044

    Article  Google Scholar 

  • Joo EY, Kim HJ, Lim YH, Koo DL, Hong SB (2010) Altered cortical excitability in patients with untreated obstructive sleep apnea syndrome. Sleep Med 11:857–861

    Article  PubMed  Google Scholar 

  • Jubeau M, Rupp T, Perrey S, Temesi J, Wuyam B, Levy P, Verges S, Millet GY (2014) Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise. PLoS One 9:e89157

    Article  PubMed  PubMed Central  Google Scholar 

  • Jubeau M, Rupp T, Temesi J, Perrey S, Wuyam B, Millet GY, Verges S (2017) Neuromuscular fatigue during prolonged exercise in hypoxia. Med Sci Sports Exerc 49(3):430–439

    Article  PubMed  Google Scholar 

  • Kayser B, Narici M, Binzoni T, Grassi B, Cerretelli P (1994) Fatigue and exhaustion in chronic hypobaric hypoxia: influence of exercising muscle mass. J Appl Physiol 76:634–640

    CAS  PubMed  Google Scholar 

  • Lanza G, Lanuzza B, Arico D, Cantone M, Cosentino FI, Pennisi M, Bella R, Pennisi G, Ferri R (2015) Direct comparison of cortical excitability to transcranial magnetic stimulation in obstructive sleep apnea syndrome and restless legs syndrome. Sleep Med 16:138–142

    Article  PubMed  Google Scholar 

  • Mathis J, de Quervain D, Hess CW (1998) Dependence of the transcranially induced silent period on the ‘instruction set’ and the individual reaction time. Electroencephalogr Clin Neurophysiol 109:426–435

    Article  CAS  PubMed  Google Scholar 

  • Millet GY, Muthalib M, Jubeau M, Laursen PB, Nosaka K (2012) Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue. J Appl Physiol (1985) 112:1335–1344

    Article  Google Scholar 

  • Miscio G, Milano E, Aguilar J, Savia G, Foffani G, Mauro A, Mordillo-Mateos L, Romero-Ganuza J, Oliviero A (2009) Functional involvement of central nervous system at high altitude. Exp Brain Res 194:157–162

    Article  PubMed  Google Scholar 

  • Neubauer JA, Sunderram J (2004) Oxygen-sensing neurons in the central nervous system. J Appl Physiol 96:367–374

    Article  CAS  PubMed  Google Scholar 

  • Nussbaumer-Ochsner Y, Ursprung J, Siebenmann C, Maggiorini M, Bloch KE (2012) Effect of short-term acclimatization to high altitude on sleep and nocturnal breathing. Sleep 35:419–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Olson EB Jr, Vidruk EH, McCrimmon DR, Dempsey JA (1983) Monoamine neurotransmitter metabolism during acclimatization to hypoxia in rats. Respir Physiol 54:79–96

    Article  CAS  PubMed  Google Scholar 

  • Roach RC, Bartsch P, Hackett PH, Oelz O (1993) The lake Louise acute mountain sickness scoring system. In: Sutton JR, Coates J, Houston CS (eds) Hypoxia and molecular medicine. Queen City Printers, Burlington, pp 272–274

    Google Scholar 

  • Rupp T, Jubeau M, Wuyam B, Perrey S, Levy P, Millet GY, Verges S (2012) Time-dependent effect of acute hypoxia on corticospinal excitability in healthy humans. J Neurophysiol 108:1270–1277

    Article  CAS  PubMed  Google Scholar 

  • Rupp T, Esteve F, Bouzat P, Lundby C, Perrey S, Levy P, Robach P, Verges S (2014) Cerebral hemodynamic and ventilatory responses to hypoxia, hypercapnia, and hypocapnia during 5 days at 4,350 m. J Cereb Blood Flow Metab 34:52–60

    Article  CAS  PubMed  Google Scholar 

  • Rupp T, Mallouf TL, Perrey S, Wuyam B, Millet GY, Verges S (2015) CO2 clamping, peripheral and central fatigue during hypoxic knee extensions in men. Med Sci Sports Exerc 47:2513–2524

    Article  CAS  PubMed  Google Scholar 

  • Sampson JB, Cymerman A, Burse RL, Maher JT, Rock PB (1983) Procedures for the measurement of acute mountain sickness. Aviat Space Environ Med 54:1063–1073

    CAS  PubMed  Google Scholar 

  • Sidhu SK, Bentley DJ, Carroll TJ (2009) Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol 106:556–565

    Article  PubMed  Google Scholar 

  • Szubski C, Burtscher M, Loscher WN (2006) The effects of short-term hypoxia on motor cortex excitability and neuromuscular activation. J Appl Physiol 101:1673–1677

    Article  PubMed  Google Scholar 

  • Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol 551:661–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verges S, Maffiuletti NA, Kerherve H, Decorte N, Wuyam B, Millet GY (2009) Comparison of electrical and magnetic stimulations to assess quadriceps muscle function. J Appl Physiol 106:701–710

    Article  PubMed  Google Scholar 

  • Verges S, Rupp T, Jubeau M, Wuyam B, Esteve F, Levy P, Perrey S, Millet GY (2012) Cerebral perturbations during exercise in hypoxia. Am J Physiol Regul Integr Comp Physiol 302:R903–R916

    Article  CAS  PubMed  Google Scholar 

  • Villien M, Bouzat P, Rupp T, Robach P, Lamalle L, Tropres I, Esteve F, Krainik A, Levy P, Warnking JM, Verges S (2013) Changes in cerebral blood flow and vasoreactivity to CO(2) measured by Arterial Spin Labeling after 6 days at 4,350 m. Neuroimage 72:272–279

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the subjects for participating in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Verges.

Ethics declarations

Grants

This work has been funded by the Rhone-Alpes Region and the Fond de dotation AGIR pour les maladies chroniques.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Communicated by Nicolas Place.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marillier, M., Arnal, P.J., Le Roux Mallouf, T. et al. Effects of high-altitude exposure on supraspinal fatigue and corticospinal excitability and inhibition. Eur J Appl Physiol 117, 1747–1761 (2017). https://doi.org/10.1007/s00421-017-3669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3669-y

Keywords

Navigation