Skip to main content
Log in

Separate and combined effects of 21-day bed rest and hypoxic confinement on body composition

European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This study tested the hypothesis that hypoxia exacerbates reductions in body mass observed during unloading.

Methods

To discern the separate and combined effects of simulated microgravity and hypoxia, 11 healthy males underwent three 21-day campaigns in a counterbalanced fashion: (1) normoxic bed rest (NBR; FiO2 = 0.209; PiO2 = 133.1 ± 0.3); (2) hypoxic ambulatory confinement (HAMB; FiO2 = 0.141 ± 0.004; PiO2 = 90.0 ± 0.4; ~4,000 m); and (3) hypoxic bed rest (HBR; FiO2 = 0.141 ± 0.004; PiO2 = 90.0 ± 0.4). The same dietary menu was applied in all campaigns. Targeted energy intakes were estimated individually using the Harris–Benedict equation taking into account whether the subjects were bedridden or ambulatory. Body mass and water balance were assessed throughout the campaigns. Whole body and regional body composition was determined before and after the campaigns using dual-energy X-ray absorptiometry. Before and during the campaigns, indirect calorimetry and visual analogue scores were employed to assess the resting energy expenditure (REE) and perceived appetite sensations, respectively.

Results

Energy intakes were lower than targeted in all campaigns (NBR: −5 %; HAMB: −14 %; HBR: −6 %; P < 0.01). Body mass significantly decreased following all campaigns (NBR: −3 %; HAMB: −4 %; HBR: −5 %; P < 0.01). While fat mass was not significantly altered, the whole body fat free mass was reduced (NBR: −4 %; HAMB: −5 %; HBR: −5 %; P < 0.01), secondary to lower limb fat-free mass reduction. Water balance was comparable between the campaigns. No changes were observed in REE and perceived appetite.

Conclusions

Exposure to simulated altitude of ~4,000 m does not seem to worsen the whole body mass and fat-free mass reductions or alter resting energy expenditure and appetite during a 21-day simulated microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMS:

Acute mountain sickness

BMI:

Body mass index

DXA:

Dual-energy X-ray absorptiometry

FFM:

Fat-free mass

FiO2 :

Fraction of inspired O2

HAMB:

Hypoxic ambulatory confinement

HBR:

Hypoxic bed rest

HR:

Heart rate

LLS:

Lake Louise score

NBR:

Normoxic bed rest

PAL:

Physical activity level factor

PFC:

Prospective food consumption

PiO2 :

Partial pressure of inspired O2

PPO:

Peak power output

REE:

Resting energy expenditure

RER:

Respiratory exchange ratio

SpO2 :

Capillary oxyhemoglobin saturation

VAS:

Visual analogue score

\(\dot{V}_{\text{E}}\) :

Minute ventilation

References

  • Bartsch P, Pfluger N, Audetat M, Shaw S, Weidmann P, Vock P, Vetter W, Rennie D, Oelz O (1991) Effects of slow ascent to 4559 M on fluid homeostasis. Aviat Space Environ Med 62(2):105–110

    PubMed  CAS  Google Scholar 

  • Bossingham MJ, Carnell NS, Campbell WW (2005) Water balance, hydration status, and fat-free mass hydration in younger and older adults. Am J Clin Nutr 81(6):1342–1350

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boyer SJ, Blume FD (1984) Weight loss and changes in body composition at high altitude. J Appl Physiol 57(5):1580–1585

    PubMed  CAS  Google Scholar 

  • Butterfield GE, Gates J, Fleming S, Brooks GA, Sutton JR, Reeves JT (1992) Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol 72(5):1741–1748

    PubMed  CAS  Google Scholar 

  • Custaud MA, Belin de Chantemele E, Larina IM, Nichiporuk IA, Grigoriev A, Duvareille M, Gharib C, Gauquelin-Koch G (2004) Hormonal changes during long-term isolation. Eur J Appl Physiol 91(5–6):508–515

    Article  PubMed  CAS  Google Scholar 

  • David B, Paul E, Kenneth B (2006) A human lunar surface base and infrastructure solution. In: Space 2006 (ed) SPACE conferences and exposition. American Institute of Aeronautics and Astronautics, USA. doi:10.2514/6.2006-7336

    Google Scholar 

  • Debevec T, McDonnell AC, Macdonald IA, Eiken O, Mekjavic IB (2014) Whole body and regional body composition changes following 10-day hypoxic confinement and unloading-inactivity. Appl Physiol Nutr Metab 39(3):386–395

    Article  PubMed  CAS  Google Scholar 

  • Drummer C, Norsk P, Heer M (2001) Water and sodium balance in space. Am J Kidney Dis 38(3):684–690

    Article  PubMed  CAS  Google Scholar 

  • Elia M, Stratton R, Stubbs J (2003) Techniques for the study of energy balance in man. Proc Nutr Soc 62(2):529–537

    Article  PubMed  Google Scholar 

  • Etheridge T, Atherton PJ, Wilkinson D, Selby A, Rankin D, Webborn N, Smith K, Watt PW (2011) Effects of hypoxia on muscle protein synthesis and anabolic signaling at rest and in response to acute resistance exercise. Am J Physiol 301(4):E697–E702

    CAS  Google Scholar 

  • Faiss R, Pialoux V, Sartori C, Faes C, Deriaz O, Millet GP (2013) Ventilation, oxidative stress and nitric oxide in hypobaric vs. normobaric hypoxia. Med Sci Sports Exerc 45(2):253–260

    Article  PubMed  CAS  Google Scholar 

  • Frings-Meuthen P, Buehlmeier J, Baecker N, Stehle P, Fimmers R, May F, Kluge G, Heer M (2011) High sodium chloride intake exacerbates immobilization-induced bone resorption and protein losses. J Appl Physiol 111(2):537–542

    Article  PubMed  CAS  Google Scholar 

  • Gibbons C, Caudwell P, Finlayson G, King N, Blundell J (2011) Validation of a new hand-held electronic data capture method for continuous monitoring of subjective appetite sensations. Int J Behav Nutr Phy 8:57

    Article  Google Scholar 

  • Graf S, Karsegard VL, Viatte V, Maisonneuve N, Pichard C, Genton L (2013) Comparison of three indirect calorimetry devices and three methods of gas collection: a prospective observational study. Clin Nutr 32(6):1067–1072

    Article  PubMed  Google Scholar 

  • Hasson RE, Howe CA, Jones BL, Freedson PS (2011) Accuracy of four resting metabolic rate prediction equations: effects of sex, body mass index, age, and race/ethnicity. J Sci Med Sport 14(4):344–351

    Article  PubMed  Google Scholar 

  • Hildebrandt W, Ottenbacher A, Schuster M, Swenson ER, Bartsch P (2000) Diuretic effect of hypoxia, hypocapnia, and hyperpnea in humans: relation to hormones and O(2) chemosensitivity. J Appl Physiol 88(2):599–610

    PubMed  CAS  Google Scholar 

  • Kayser B, Verges S (2013) Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes Rev 14(7):579–592

    Article  PubMed  CAS  Google Scholar 

  • Lane HW, Feeback DL (2002) Water and energy dietary requirements and endocrinology of human space flight. Nutrition 18(10):820–828

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc A, Lin C, Shackelford L, Sinitsyn V, Evans H, Belichenko O, Schenkman B, Kozlovskaya I, Oganov V, Bakulin A, Hedrick T, Feeback D (2000) Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol 89(6):2158–2164

    PubMed  CAS  Google Scholar 

  • Lippl FJ, Neubauer S, Schipfer S, Lichter N, Tufman A, Otto B, Fischer R (2010) Hypobaric hypoxia causes body weight reduction in obese subjects. Obesity 18(4):675–681

    Article  PubMed  Google Scholar 

  • Loeppky JA, Roach RC, Selland MA, Scotto P, Luft FC, Luft UC (1993) Body fluid alterations during head-down bed rest in men at moderate altitude. Aviat Space Environ Med 64(4):265–274

    PubMed  CAS  Google Scholar 

  • Mawson JT, Braun B, Rock PB, Moore LG, Mazzeo R, Butterfield GE (2000) Women at altitude: energy requirement at 4,300 m. J Appl Physiol 88(1):272–281

    PubMed  CAS  Google Scholar 

  • Melzer K, Kayser B, Saris WH, Pichard C (2005) Effects of physical activity on food intake. Clin Nutr 24(6):885–895

    Article  PubMed  Google Scholar 

  • Moore LG, Cymerman A, Huang SY, McCullough RE, McCullough RG, Rock PB, Young A, Young P, Weil JV, Reeves JT (1987) Propranolol blocks metabolic rate increase but not ventilatory acclimatization to 4,300 m. Respir Physiol 70(2):195–204

    Article  PubMed  CAS  Google Scholar 

  • Nair CS, Malhotra MS, Gopinath PM, Mathew L (1971) Effect of acclimatization to altitude and cold on basal heart rate, blood pressure, respiration and breath-holding in man. Aerosp Med 42(8):851–855

    PubMed  CAS  Google Scholar 

  • Narici MV, Kayser B (1995) Hypertrophic response of human skeletal muscle to strength training in hypoxia and normoxia. Eur J Appl Physiol Occup Physiol 70(3):213–219

    Article  PubMed  CAS  Google Scholar 

  • Oltmanns KM, Gehring H, Rudolf S, Schultes B, Schweiger U, Born J, Fehm HL, Peters A (2006) Persistent suppression of resting energy expenditure after acute hypoxia. Metab Clin Exp 55(5):669–675

    Article  PubMed  CAS  Google Scholar 

  • Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101(2):143–194

    Article  PubMed  CAS  Google Scholar 

  • Pugh LGC, Ward MP (1956) Some effects of high altitude on man. Lancet 268(6953):1115–1121

    Article  Google Scholar 

  • Quintero P, Milagro FI, Campion J, Martinez JA (2010) Impact of oxygen availability on body weight management. Med Hypotheses 74(5):901–907

    Article  PubMed  CAS  Google Scholar 

  • Reynolds RD, Lickteig JA, Deuster PA, Howard MP, Conway JM, Pietersma A, deStoppelaar J, Deurenberg P (1999) Energy metabolism increases and regional body fat decreases while regional muscle mass is spared in humans climbing Mt. Everest. J Nutr 129(7):1307–1314

    PubMed  CAS  Google Scholar 

  • Roach RC, Bartsch P, Hackett PH, Oelz O (1993) The Lake Louise AMS Scoring Consensus Committee. The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Houston CS, Coates G, Burlington VT (eds) Hypoxia and molecular medicine. Queen City Printers, USA, pp 272–274

    Google Scholar 

  • Rose MS, Houston CS, Fulco CS, Coates G, Sutton JR, Cymerman A (1988) Operation Everest. II: nutrition and body composition. J Appl Physiol 65(6):2545–2551

    PubMed  CAS  Google Scholar 

  • Schols AM (1997) Nutrition and outcome in chronic respiratory disease. Nutrition 13(2):161–163

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Zwart SR (2008) Nutritional biochemistry of spaceflight. Adv Clin Chem 46:87–130

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Davis-Street JE, Rice BL, Nillen JL, Gillman PL, Block G (2001) Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans. J Nutr 131(7):2053–2061

    PubMed  CAS  Google Scholar 

  • Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE (2005) The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J Nutr 135(3):437–443

    PubMed  CAS  Google Scholar 

  • Snijder MB, Visser M, Dekker JM, Seidell JC, Fuerst T, Tylavsky F, Cauley J, Lang T, Nevitt M, Harris TB (2002) The prediction of visceral fat by dual-energy X-ray absorptiometry in the elderly: a comparison with computed tomography and anthropometry. Int J Obes Relat Metab Disord 26(7):984–993

    Article  PubMed  CAS  Google Scholar 

  • Stein TP, Leskiw MJ, Schluter MD, Hoyt RW, Lane HW, Gretebeck RE, LeBlanc AD (1999) Energy expenditure and balance during spaceflight on the space shuttle. Am J Physiol 276(6 Pt 2):R1739–R1748

    PubMed  CAS  Google Scholar 

  • Stevens PM, Miller PB, Lynch TN, Gilbert CA, Johnson RL, Lamb LE (1966) Effects of lower body negative pressure on physiologic changes due to four weeks of hypoxic bed rest. Aerosp Med 37(5):466–474

    PubMed  CAS  Google Scholar 

  • Stuart CA, Shangraw RE, Peters EJ, Wolfe RR (1990) Effect of dietary protein on bed-rest-related changes in whole-body-protein synthesis. Am J Clin Nutr 52(3):509–514

    PubMed  CAS  Google Scholar 

  • Tesch PA, Berg HE, Bring D, Evans HJ, LeBlanc AD (2005) Effects of 17-day spaceflight on knee extensor muscle function and size. Eur J Appl Physiol 93(4):463–468

    Article  PubMed  Google Scholar 

  • Tschop M, Morrison KM (2001) Weight loss at high altitude. Adv Exp Med Biol 502:237–247

    Article  PubMed  CAS  Google Scholar 

  • Wasse LK, Sunderland C, King JA, Batterham RL, Stensel DJ (2012) Influence of rest and exercise at a simulated altitude of 4,000 m on appetite, energy intake, and plasma concentrations of acylated ghrelin and peptide YY. J Appl Physiol 112(4):552–559

    Article  PubMed  CAS  Google Scholar 

  • Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109(1–2):1–9

    PubMed  PubMed Central  Google Scholar 

  • Westerterp KR, Kayser B (2006) Body mass regulation at altitude. Eur J Gastroenterol Hepatol 18(1):1–3

    Article  PubMed  Google Scholar 

  • Westerterp KR, Brouns F, Saris WH, ten Hoor F (1988) Comparison of doubly labeled water with respirometry at low- and high-activity levels. J Appl Physiol 65(1):53–56

    PubMed  CAS  Google Scholar 

  • Westerterp KR, Kayser B, Wouters L, Le Trong JL, Richalet JP (1994) Energy balance at high altitude of 6,542 m. J Appl Physiol 77(2):862–866

    PubMed  CAS  Google Scholar 

  • Westerterp KR, Robach P, Wouters L, Richalet JP (1996) Water balance and acute mountain sickness before and after arrival at high altitude of 4,350 m. J Appl Physiol 80(6):1968–1972

    PubMed  CAS  Google Scholar 

  • Westerterp KR, Meijer EP, Rubbens M, Robach P, Richalet JP (2000) Operation Everest III: energy and water balance. Pflugers Arch 439(4):483–488

    Article  PubMed  CAS  Google Scholar 

  • Westerterp-Plantenga MS, Westerterp KR, Rubbens M, Verwegen CR, Richelet JP, Gardette B (1999) Appetite at “high altitude” [Operation Everest III (Comex-’97)]: a simulated ascent of Mount Everest. J Appl Physiol 87(1):391–399

    PubMed  CAS  Google Scholar 

  • Zwart SR, Crawford GE, Gillman PL, Kala G, Rodgers AS, Rogers A, Inniss AM, Rice BL, Ericson K, Coburn S, Bourbeau Y, Hudson E, Mathew G, Dekerlegand DE, Sams CF, Heer MA, Paloski WH, Smith SM (2009) Effects of 21 days of bed rest, with or without artificial gravity, on nutritional status of humans. J Appl Physiol 107(1):54–62

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was funded by the European Union Programme FP7 (PlanHab project; Grant No. 284438), the European Space Agency (ESA) Programme for European Cooperating States (ESTEC/Contract No. 40001043721/11/NL/KML: Planetary Habitat Simulation), and the Slovene Research Agency (Contract No. L3-3654: Zero and reduced gravity simulation: the effect on the cardiovascular and musculoskeletal systems). The authors are indebted to Iva Kumprej, Elaine Woods and Seodhna Murphy for their excellent assistance with the data collection. Last but definitely not least, we would like to acknowledge the devoted participants without whom this study would not have been possible.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadej Debevec.

Additional information

Communicated by Klaas R Westerterp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debevec, T., Bali, T.C., Simpson, E.J. et al. Separate and combined effects of 21-day bed rest and hypoxic confinement on body composition. Eur J Appl Physiol 114, 2411–2425 (2014). https://doi.org/10.1007/s00421-014-2963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2963-1

Keywords

Navigation