Skip to main content
Log in

A modified fractional-order thermo-viscoelastic model and its application in thermal-induced nonlocal response analysis of a microscale plate

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The relaxation process of viscoelastic materials has the memory-dependent effect, while integer-order thermo-viscoelastic models may be challenged to predict precise thermal–mechanical behaviors in solving transient problems of viscoelastic materials in a heat transfer environment. It is found that the fractional-order viscoelastic models fit well with the experimental data from creep and relaxation tests. Additionally, the size-dependent effect on elastic deformation is becoming an issue of great importance recently due to the development of small-scale devices. To capture the memory-dependent and size-dependent effects, the present work aims to formulate a modified fractional-order thermo-viscoelastic model at small-scale for the first time by simultaneously incorporating the effects of the unified definition of the fractional-order parameter, the unified definition of the fractional-order strain parameter and the nonlocal parameter based on the generalized thermo-viscoelastic theory. Then the dynamic response of a viscoelastic microplate under a thermal shock is studied by using the modified fractional-order thermo-viscoelastic model. The corresponding governing equations are formulated and solved by the Laplace transform and its numerical inversion. In conclusion, the influences of the fractional-order parameters, the fractional-order strain parameters and the nonlocal parameters on the variations of the considered quantities are presented and discussed in detail. The obtained results show that these parameters significantly influence the variations of all the considered quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Vogt, B.D.: Mechanical and viscoelastic properties of confined amorphous polymers. J. Polym. Sci. Part B: Polym. Phys. 56(1), 9–30 (2018)

    Article  Google Scholar 

  2. Zhou, X.Q., Yu, D.Y., Shao, X.Y., Zhang, S.Q., Wang, S.: Research and applications of viscoelastic vibration damping materials. a review. Compos. Struct. 136, 460–480 (2016)

    Article  Google Scholar 

  3. Younesian, D., Hosseinkhani, A., Askari, H., Esmailzadeh, E.: Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications. Nonlin. Dyn. 97(1), 853–895 (2019)

    Article  MATH  Google Scholar 

  4. Rao, M.D.: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J. Sound Vibr. 262, 457–474 (2003)

    Article  Google Scholar 

  5. Yang, W.Z., Chen, Z.T.: Thermo-viscoelastic response of a cracked, functionally graded half-plane under a thermal shock. Eng. Fract. Mech. 206, 267–277 (2019)

    Article  Google Scholar 

  6. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MATH  Google Scholar 

  7. Peshkov, V.: Second sound in helium. J. Phys. C. 8, 381–386 (1944)

    Google Scholar 

  8. Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. CR. Phys. 247, 431–433 (1958)

    MATH  Google Scholar 

  9. Vernotte, P.M., Hebd, C.R.: Paradoxes in the continuous theory of the heat conduction. CR. Phys. 246, 3154–3155 (1958)

    MATH  Google Scholar 

  10. Tzou, D.Y.: A unified field approach for heat conduction from macro-to-micro-scales. J. Heat Trans. 117, 8–16 (1995)

    Article  Google Scholar 

  11. Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stresses. 30(3), 231–238 (2007)

    Article  Google Scholar 

  12. Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014)

    Article  MATH  Google Scholar 

  13. Lord, H.W., Shulman, Y.A.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids. 15(5), 299–309 (2007)

    Article  MATH  Google Scholar 

  14. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elastic. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  15. Ezzat, M.A., Karamany, A.S.E.I.: The uniqueness and reciprocity theorems for generalized thermoviscoelasticity with two relaxation times. Int. J. Eng. Sci. 40(11), 1275–1284 (2002)

    Article  MATH  Google Scholar 

  16. Karamany, A.S.E.I., Ezzat, M.A.: On the boundary integral formulation of thermo-viscoelasticity theory. Int. J. Eng. Sci. 40, 1943–1956 (2002)

    Article  MATH  Google Scholar 

  17. Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 11, 291–356 (1962)

    Article  MATH  Google Scholar 

  18. Christensen, R.M.: Theory of viscoelasticity-An introduction. J. Appl. Mech-T. Asme. 51(1), 292–292 (1984)

    Article  Google Scholar 

  19. EI-Karamany, A.S., Ezzat, M.A.: Thermal shock problem in generalized thermo-viscoelasticity under four theories. Int. J. Eng. Sci. 42(7), 649–671 (2001)

    Article  MATH  Google Scholar 

  20. Sherief, H.H., Hamza, F.A., EI-Latief, A.M.A., EI-Latief, A.: 2D problem for a half-space in the generalized theory of thermo-viscoelasticity. Mech. Time-Depend. Mater. 19(4), 557–568 (2015)

    Article  Google Scholar 

  21. Zhen, Y.X., Zhou, L.: Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory. Mod. Phys. Lett. B. 31(8), 1750069 (2017)

    Article  Google Scholar 

  22. Sharma, J.N., Othman, M.I.A.: Effect of rotation on generalized thermo-viscoelastic rayleigh-Lamb waves. Int. J. Solids. Struct. 44(13), 4243–4255 (2007)

    Article  MATH  Google Scholar 

  23. Alimirzaei, S., Mohammadimehr, M., Tounsi, A.: Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Struct. Eng Mech. 71(5), 485–502 (2019)

    Google Scholar 

  24. Allam, M.N.M., Radwan, A.F.: Nonlocal strain gradient theory for bending, buckling and vibration of viscoelastic functionally graded curved nanobeam embedded in an elastic medium. Adv. Mech. Eng. 11(4), 1–15 (2019)

    Article  Google Scholar 

  25. Pouresmaeeli, S., Ghavanloo, E., Fazelzadeh, S.A.: Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium. Compos. Struct. 96, 405–410 (2013)

    Article  Google Scholar 

  26. Yu, Y.J., Tian, X.G., Liu, X.R.: Size-dependent generalized thermoelasticity using Eringen’s nonlocal model. Eur. J. Mech A-Solid. 51, 96–106 (2015)

    Article  MATH  Google Scholar 

  27. Stölken, J., Evans, A.: A microbend test method for measuring the plasticity length-scale. Acta. Mater. 46(14), 5109–5115 (1998)

    Article  Google Scholar 

  28. Maranganti, R., Sharma, P.: Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98(19), 195504 (2007)

    Article  Google Scholar 

  29. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  30. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  31. Eringen, A.C.: Nonlocal continuum field theories. Appl. Mech. Rev. 56(2), B20–B22 (2003)

    Article  Google Scholar 

  32. Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507–1518 (2010)

    Article  MATH  Google Scholar 

  33. Ansari, R., Shojaei, M.F., Mohammadi, V., Gholami, R., Rouhi, H.: Buckling and postbuckling of single-walled carbon nanotubes based on a nonlocal Timoshenko beam model. ZAMM-Z. Angew. Math. Me. 95(9), 1–13 (2014)

    MATH  Google Scholar 

  34. Li, C.L., Tian, X.G., He, T.H.: Nonlocal thermo-viscoelasticity and its application in size-dependent responses of bi-layered composite viscoelastic nanoplate under nonuniform temperature for vibration control. Mech. Adv. Mater. Struc. 28, 1797–1811 (2020)

    Article  Google Scholar 

  35. Aime, S., Cipelletti, L.C., Ramos, L.: Power law viscoelasticity of a fractal colloidal gel. J. Rheol. 62(6), 1429–1444 (2018)

    Article  Google Scholar 

  36. Li, X.Y., Xue, Z.N., Tian, X.G.: A modified fractional order generalized bio-thermoelastic theory with temperature-dependent thermal material properties. Int. J. Therm Sci. 132, 249–256 (2018)

    Article  Google Scholar 

  37. Warbhe, S.D., Tripathi, J.J., Deshmukh, K.C.: Fractional heat conduction in a thin hollow circular disk and associated thermal deflection. J. Therm Stress. 41(2), 1262–1270 (2018)

    Article  Google Scholar 

  38. Povstenko, Y.Z.: Fractional cattaneo-type equations and generalized thermoelasticity. J. Thermal Stress. 34(2), 97–114 (2011)

    Article  Google Scholar 

  39. Youssef, H.M.: Theory of fractional order generalized thermoelasticity. J. Heat Transf. 132(6), 061301 (2010)

    Article  Google Scholar 

  40. Sherief, H.H., EI-Sayed, A.M.A., EI-Latief, A.M.A.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47(2), 269–275 (2010)

    Article  MATH  Google Scholar 

  41. Ezzat, M.A.: Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Physica B. 406, 30–35 (2011)

    Article  Google Scholar 

  42. Oliveira, D.S., Capelas de Oliveira, E.: On a Caputo-type fractional derivative. Adv. Pure. Appl. Math. 10(2), 81–91 (2018)

    Article  MATH  Google Scholar 

  43. Yu, Y.J., Deng, Z.C.: Fractional order theory of Cattaneo-type thermoelasticity using new fractional derivatives. Appl. Math. Model. 87, 731–751 (2020)

    Article  MATH  Google Scholar 

  44. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  45. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Thermal Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  46. Li, C., Deng, W.H., Zhao, L.J.: Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Continu. Dyn. Syst. B. 24(4), 1989–2015 (2019)

    Article  MATH  Google Scholar 

  47. Paola, M.D., Pirrotta, M., Valenza, A.: Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results. Mech. Mater. 43, 799–806 (2011)

    Article  Google Scholar 

  48. Magin, R.L., Royston, T.: Fractional-order elastic models of cartilage: a multiscale approach. Commun. Nonlin. Sci. Numer. Simul. 15, 657–664 (2010)

    Article  MATH  Google Scholar 

  49. Youssef, H.M.: Theory of generalized thermoelasticity with fractional order strain. J. Vib. Control. 22, 3840–3857 (2016)

    Article  MATH  Google Scholar 

  50. Li, C.L., Guo, H.L., Tian, X.G., He, T.H.: Generalized thermoviscoelastic analysis with fractional order strain in a thick viscoelastic plate of infinite extent. J. Therm. Stress. 42(8), 1051–1070 (2019)

    Article  Google Scholar 

  51. Das, N., De, S., Sarkar, N.: Plane waves in nonlocal generalized thermoelasticity. ZAMM-Z Angew Math Me. 102(5), e202000294 (2022)

    Google Scholar 

  52. Sharma, S.R., Mehalwal, J.C., Sarkar, N., Sharma, D.K.: Nonlocal elasticity and thermal dualphase-lag effect on the vibration analysis of transversely isotropic electro-magneto generalized thermoelastic sphere with voids. ZAMM-Z Angew Math Me. 102(5), e202100200 (2022)

    Google Scholar 

  53. Sharma, D.K., Thakur, D., Walia, V., Sarkar, N.: Free vibration analysis of a nonlocal thermoelastic hollow cylinder with diffusion. J. Therm Stress. 43(8), 981–997 (2020)

    Article  Google Scholar 

  54. Sarkar, N., Bachher, M., Das, N., De, S., Sarkar, N.: Waves in nonlocal thermoelastic solids of type III. ZAMM-Z Angew Math Me. 100(4), e201900074 (2020)

    Google Scholar 

  55. Sarkar, N.: Thermoelastic responses of a nonlocal elastic rod due to nonlocal heat conduction. ZAMM-Z Angew Math Me. 100(4), e201900252 (2020)

    Google Scholar 

  56. Sarkar, N., De, S., Sarkar, N.: Waves in nonlocal thermoelastic solids of type II. J. Therm Stress. 42(9), 1153–1170 (2019)

    Article  Google Scholar 

  57. Ezzat, M.A., Karamany, A.S.E.I., Bary, A.A.E.I.: Generalized thermo-viscoelasticity with memory-dependent derivative. Int. J. Mech. Sci. 89, 470–475 (2014)

    Article  Google Scholar 

  58. Yang, W.Z., Chen, Z.T.: Nonlocal dual-phase-lag heat conduction and the associated nonlocal thermal-viscoelastic analysis. Int. J. Heat. Mass. Tran. 156, 119752 (2020)

    Article  Google Scholar 

  59. Xue, Z.N., Cao, G.Q., Liu, J.L.: Size-dependent thermoelasticity of a finite bi-layered nanoscale plate based on nonlocal dual-phase-lag heat conduction and Eringen’s nonlocal elasticity. Appl. Math. Mech-Engl. 42(1), 1–16 (2021)

    Article  MATH  Google Scholar 

  60. Peng, W., Ma, Y.B., Li, C.L., He, T.H.: Dynamic analysis to the fractional order thermoelastic diffusion problem of an infinite body with a spherical cavity and variable material properties. J. Therm. Stresses. 43(1), 38–54 (2020)

    Article  Google Scholar 

  61. Lim, C.W., Li, C., Yu, J.L.: Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta. Mech. Sinica. 26(5), 755–765 (2010)

    Article  MATH  Google Scholar 

  62. Lim, C.W.: On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection. Appl. Math. Mech-Engl. 31(1), 37–54 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Nos. 11972176, 12062011) and Gansu Province outstanding graduate student Innovation Star project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhu He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Peng, W. & He, T. A modified fractional-order thermo-viscoelastic model and its application in thermal-induced nonlocal response analysis of a microscale plate. Arch Appl Mech 93, 687–705 (2023). https://doi.org/10.1007/s00419-022-02293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02293-0

Keywords

Navigation