Skip to main content
Log in

Numerical simulation for non-constant parameters effects on blood flow of Carreau–Yasuda nanofluid flooded in gyrotactic microorganisms: DTM-Pade application

  • Technical notes
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The peristaltic flow of Carreau–Yasuda fluid through a micro-vessel involving oxytactic microorganisms and nanoparticles in a vertical asymmetric channel is examined. In early times, scientific research shows that the cancer cells exposed to low oxygen conditions had the advantage of staying in the bloodstream more and can invade healthy cells as well, whereas the oxytactic microorganisms exhibit negative chemotaxis to gradients of oxygen (oxygen repellents). So, it had to be studied the behavior of oxytactic microorganisms and nanoparticle and their roles in the drug-carriers system. All non-dimensional physical parameters are supposed to be variable as the viscosity of blood variable with fluid temperature and nanoparticle concentration. This system of partial differential equations was formulated and transformed mathematically using new theories of differential transform method combined by Pade' approximation (DTM-Pade′). The solution of the mentioned system is displayed digitally in tables and graphically in sketches. The existing study assured that the microorganism density in the direction near to the hypoxic tumor tissues regions grows with a rising in oxygen concentrations and the blood viscosity diminutions. Results show that the number of pores increases the flow and the particles of fluid moving more freely with increment in distribution of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

\(U, V\) :

Velocities in x and y directions in fixed frame

g:

Acceleration due to gravity

P:

Pressure

\({a}_{1}, {b}_{1}\) :

Amplitudes of waves

\({D}_{B}\) :

Brownian diffusion coefficient

\(\lambda \) :

Wave length

\(\tau \) :

Extra stress tensor

\(\Gamma \) :

Time constant parameter

σ*,k* :

Stefan–Boltzmann and the Rosseland mean absorption coefficient

\({\rho }_{f}\) :

Density of nanoparticle

\({\rho }_{m}\) :

Density of microorganism

\(C\) :

Nanoparticle concentration

T:

Temperature

\({\beta }_{T}\) :

Coefficient of thermal expansion

\({D}_{m}\) :

Coefficient of thermophoresis diffusion

\({D}_{s}\) :

Oxytactic microorganisms diffusivity

\(k\) :

Thermal conductivity

\({\omega }_{1}\) :

Rate of oxygen production

\({\omega }_{2}\) :

Rate of oxygen break down

\({\mu }_{0}\) :

Fluid viscosity in constant case

\(\nu \) :

Fluid kinematic viscosity

\({\mathrm{R}}_{\mathrm{e}}\) :

Reynold’s number

\({\mathrm{P}}_{\mathrm{r}}\) :

Prandtl number

\(\mathrm{M}\) :

Hartman number

\({\mathrm{N}}_{\mathrm{b}}\) :

Brownian motion parameter

\({\mathrm{N}}_{\mathrm{t}}\) :

Thermophoresis parameter

\({\mathrm{G}}_{\mathrm{t}}\) :

Temperature graph of number

\({\mathrm{G}}_{\mathrm{c}}\) :

Mass graph of number

\({\mathrm{R}}_{\mathrm{b}}\) :

Bioconvection Rayleigh number

\({\mathrm{R}}_{\mathrm{n}}\) :

Thermal radiation

\({\rho }_{e}\) :

Bioconvection Peclet

\({W}_{e}\) :

Weissenberg number

\({\sigma }_{1}\) :

Bioconvection constant

\(\psi \) :

Stream function

\({\mathrm{E}}_{\mathrm{c}}\) :

Eckert number

\(\Omega \) :

Oxytactic microorganisms density

\(\phi \) :

Phase difference

\(\alpha \) :

Non-constant viscosity parameter (Temperature)

\(\beta \) :

Non-constant viscosity parameter (Concentration)

References

  1. AlTameemi, W., Dale, T.P., Al-Jumaily, R.M.K.H., Forsyth, N.R.: hypoxia-modified cancer cell metabolism. Front. In Cell and Developm. Biol. 7, 1–15 (2019)

    Article  Google Scholar 

  2. Keith, B., Simon, M.C.: Hypoxia-inducible factors, stem cells, and cancer. Cell 129, 465–472 (2007)

    Article  Google Scholar 

  3. Bernauer, C., Stella, Y.K., Chisholm, J.C., Lepicard, E.Y., Robinson, S.P., Shipley, J.M.: Hypoxia and its therapeutic possibilities in paediatric cancers. Br. J. Cancer 124, 539–551 (2021)

    Article  Google Scholar 

  4. Abrantes, A.M., Tavares, L.C., Pires, S., Casalta-Lopes, J., Mendes, C., Simoes, M., Grazina, M.M., Carvalho, R.A., Botelho, M.F.: Metabolic effects of hypoxia in colorectal cancer by 13C NMR isotopomer analysis. BioMed Res. Int. 759791, 1–10 (2014)

    Article  Google Scholar 

  5. Marini, C.P., Russo, G.C., Nathan, I.M., Jurkiewicz, A., McNiels, J.: Effect of hematocrit on regional oxygen delivery and extraction in an adult respiratory distress syndrome animal model. The Am. J. Surg. 180, 108–114 (2000)

    Article  Google Scholar 

  6. Akbar, N.S.: Bioconvection peristaltic flow in an asymmetric channel filled by nanofluid containing gyrotactic microorganism: bionano engineering model. Int. J. Numer. Meth. Heat Fluid Flow 25(2), 1–13 (2015)

    Article  MathSciNet  Google Scholar 

  7. Elogail, M.A., Mekheimer, Kh.S.: Modulated viscosity-dependent parameters for MHD blood flow in microvessels containing oxytactic microorganisms and nanoparticles. Symmetry 12, 2114 (2020)

    Article  Google Scholar 

  8. Hart, F.X., Palisano, J.R.: The application of electric fields in biology and medicine. IntechOpen (2017). https://doi.org/10.5772/intechopen.71683

    Article  Google Scholar 

  9. Javid, K., Waqas, M., Asghar, Z., Ghaffari, A.: A theoretical analysis of Biorheological fluid flowing through a complex wavy convergent channel under porosity and electro magneto hydrodynamics effects. Comp. Meth. Progr. Biomed. 191, 105413 (2020)

    Article  Google Scholar 

  10. Tanveer, A., Khan, M., Salahuddin, T., Malik, M.Y.: Numerical simulation of electroosmosis regulated peristaltic transport of Bingham Nanofluid. Comp. Meth. Progr. Biomed. 180, 105005 (2019)

    Article  Google Scholar 

  11. Ranjit, N.K., Shit, G.C.: Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced microchannel with different zeta potential and wall slip. Physica A 482, 458–476 (2017)

    Article  MathSciNet  Google Scholar 

  12. Saleem, S., Akhtar, S., Nadeem, S., Saleem, A., Ghalambaz, M., Issakhov, A.: Mathematical study of electroosmotically driven peristaltic flow of casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls. Chin. J. Phys. 71, 300–311 (2021)

    Article  MathSciNet  Google Scholar 

  13. Noreena, S., Tripathi, D.: Heat transfer analysis on electroosmotic flow via peristaltic pumping in non-Darcy porous medium. Thermal Sci. Eng. Progr. 11, 254–262 (2019)

    Article  Google Scholar 

  14. Tripathi, D., Borode, A., Jhorar, R., Anwar Bég, O., Tiwari, A.K.: Computer modelling of electro-osmotically augmented three layered microvascular peristaltic blood flow. Microvasc. Res 114, 65–83 (2017)

    Article  Google Scholar 

  15. Tripathi, D., Bhushan, S., Bég, O.A.: Analytical study of electroosmosis modulated capillary peristaltic hemodynamics. J. Mech. Med. Biol 17, 1750052 (2016)

    Article  Google Scholar 

  16. Bandopadhyay, A., Tripathi, D., Chakraborty, S.: Electroosmosis-modulated peristaltic transport in microfluidic channels. Phys. Fsluids 28(5), 052002 (2016)

    Article  Google Scholar 

  17. Akram, S., Athar, M., Saeed, K., Razia, A.: Crossbreed impact of double-diffusivity convection on peristaltic pumping of magneto Sisko nanofluids in non-uniform inclined channel: a bio-nanoengineering model. Sci. Prog. 104(3), 1–23 (2021)

    Article  Google Scholar 

  18. Akram, S., Razia, A.: Hybrid effects of thermal and concentration convection on peristaltic flow of fourth grade nanofluids in an inclined tapered channel: applications of double-diffusivity. Comput. Model. Eng. Sci. 127(3), 901–922 (2021)

    Google Scholar 

  19. Akram, S., Athar, M., Saeed, K.: Hybrid impact of thermal and concentration convection on peristaltic pumping of Prandtl nanofluids in non-uniform inclined channel and magnetic field. Case Stud. Thermal Eng. 25, 100965 (2021)

    Article  Google Scholar 

  20. Afzal, Q., Akram, S., Ellahi, R., Sait, S.M., Chaudhry, F.: Thermal and concentration convection in nanofluids for peristaltic flow of magneto couple stress fluid in a nonuniform channel. J. Therm. Anal. Calorim. 144, 2203–2218 (2021)

    Article  Google Scholar 

  21. Ibrahim, M.G., Hasona, W.M., ElShekhipy, A.A.: Concentration-dependent viscosity and thermal radiation effects on MHD peristaltic motion of Synovial Nanofluid: applications to rheumatoid arthritis treatment. Comput. Meth. Progr. Biomed. 170, 39–52 (2019)

    Article  Google Scholar 

  22. Akram, S., Athar, M., Saeed, K., Umair, M.Y.: Double-diffusivity convection on Powell-Eyring nanofluids in non-uniform inclined channel under the impact of peristaltic propulsion and induced magnetic field. Eur. Phys. J. Plus 136(5), 1–14 (2021)

    Article  Google Scholar 

  23. Miao, L., Massoudi, M.E.: effects of shear dependent viscosity and variable thermal conductivity on the flow and heat transfer in a slurry. Energies 8, 11546–11574 (2015)

    Article  Google Scholar 

  24. Akram, S., Afzal, Q., Aly, E.H.: Half-breed effects of thermal and concentration convection of peristaltic pseudoplastic nanofluid in a tapered channel with induced magnetic field. Case Stud. Thermal Eng. 22, 100775 (2020)

    Article  Google Scholar 

  25. Akram, S., Razia, A., Afzal, F.: Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch. Appl. Mech. 90(7), 1583–1603 (2020)

    Article  Google Scholar 

  26. S. Akram, M. Athar, K. Saeed, A. Razia, T. Muhammad and A. Hussain, Slip boundaries effects on double-diffusive convection of magneto-pseudoplastic nanofluid on peristaltic flux in an inclined asymmetric channel, Proc IMechE Part E: J Process Mechanical Engineering, (2021) 1–13.

  27. Pukhov, G.E.: Differential transforms and circuit theory. Int. J. Circuit Theory Appl. 10, 265–276 (1982)

    Article  Google Scholar 

  28. Zhou, J.K.: Differential transformation and its applications for electrical circuits. Huazhong University Press, Wuhan (1986)

    Google Scholar 

  29. Hasona, W.M., El-Shekhipy, A., Ibrahim, M.G.: Semi-analytical solution to MHD peristaltic flow of a Jeffrey fluid in presence of Joule heat effect by using multi-step differential transform method. New Trends in Math. Sci. 7(2), 123–137 (2019)

    Article  Google Scholar 

  30. Kuo, B., Lo, C.: Application of the differential transformation method to the solution of a damped system with high nonlinearity. Nonlinear Anal. TMA 70(4), 1732–1737 (2009)

    Article  MathSciNet  Google Scholar 

  31. Kanth, A., Aruna, K.: Differential transform method for solving the linear and nonlinear Klein-Gordon equation. Comput. Phys. Commun. 180(5), 708–711 (2009)

    Article  MathSciNet  Google Scholar 

  32. Peter, W.: On the convergence and stability of the epsilon algorithm". SIAM J. Numer. Anal. 3(1), 91–122 (1966)

    Article  MathSciNet  Google Scholar 

  33. Ismail, H.N.A., Youssef, I.K., Rageh, T.M.: New approaches for taylor and Padé approximations. Int. J. Adv. Appl. Math. Mech. 2(3), 78–86 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Gama, S.M.A., Chertovskih, R., Zheligovsky, V.: Computation of kinematic and magnetic a-effect and eddy diffusivity tensors by Padé approximation. Fluids (MDPI) 110, 2–26 (2019)

    Google Scholar 

  35. Thiagarajan, M., Senthilkumar, K.: DTM-Pade approximants for MHD Flow with suction/blowing. J. Appl. Fluid Mech. 6(4), 537–543 (2013)

    Google Scholar 

  36. Baag, S., Acharya, M.R., Dash, G.C.: MHD flow analysis using DTM-Pade’ and numerical methods. Am. J. Fluid Dyn. 4(1), 6–15 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Ibrahim.

Ethics declarations

Conflict of interest

The author declared that there is no any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.G. Numerical simulation for non-constant parameters effects on blood flow of Carreau–Yasuda nanofluid flooded in gyrotactic microorganisms: DTM-Pade application. Arch Appl Mech 92, 1643–1654 (2022). https://doi.org/10.1007/s00419-022-02158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02158-6

Keywords

Navigation