Skip to main content
Log in

Application of Ritz method to large amplitude rapid surface heating of FGM shallow arches

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this article, thermally induced vibrations of shallow functionally graded material arches is considered and analyzed. The arch is subjected to sudden thermal loading on one surface while the other surface is kept at a constant temperature. Based on the uncoupled thermoelasticity assumptions, the one-dimensional heat conduction equation is established and numerically solved using the finite difference method and Crank–Nicolson marching scheme. The classical theory of curved beams is used to drive the equations of motion, where the curvature of the beam is assumed to be constant. The strain–displacement relationships are based on the von Kármán nonlinear theory based on the shallow arch theory of Donnell. The governing equations are obtained based on the Hamilton principle and converted to a set of nonlinear algebraic equations via the polynomial Ritz method. The obtained equations are nonlinear and solved using the \(\beta \)-Newmark time marching scheme and the Newton–Raphson method. Comparison of the numerical results is done with other existing results for the case of isotropic homogeneous shallow arches where well agreement is obtained. The effects of different parameters on the numerical results are presented and provided in graphical presentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hetnarski, R.B., Eslami, M.R.: Thermal Stresses. Advanced Theory and Applications. Springer, Berlin (2019)

    Book  Google Scholar 

  2. Boley, B.A., Weiner, J.H.: Theory of Thermal Stresses. Wiley, New York (1960)

    MATH  Google Scholar 

  3. Boley, B.A.: Thermally induced vibrations of beams. J. Aeronaut. Sci. 23(2), 179–182 (1956). https://doi.org/10.2514/8.3527

    Article  MATH  Google Scholar 

  4. Boley, B.A., Barber, A.D.: Dynamic response of beams and plates to rapid heating. J. Appl. Mech-T ASME 24(3), 413–416 (1957)

    Article  MathSciNet  Google Scholar 

  5. Kraus, H.: Thermally induced vibrations of thin nonshallow spherical shells. AIAA J. 4(3), 500–505 (1966). https://doi.org/10.2514/3.3464

    Article  Google Scholar 

  6. Nakajo, Y., Hayashi, K.: Response of circular plates to thermal impact. J. Sound Vib. 95(2), 213–222 (1984). https://doi.org/10.1016/0022-460X(84)90543-1

    Article  MATH  Google Scholar 

  7. Das, S.: Vibrations of polygonal plates due to thermal shock. J. Sound Vib. 89(4), 471–476 (1983). https://doi.org/10.1016/0022-460X(83)90348-6

    Article  MATH  Google Scholar 

  8. Venkataramana, J., Jana, M.K.: Thermally forced vibrations of beams. J. Sound Vib. 37(2), 291–295 (1974). https://doi.org/10.1016/S0022-460X(74)80338-X

    Article  MATH  Google Scholar 

  9. Stroud, R.C., Mayers, J.: Dynamic response of rapidly heated plate elements. AIAA J. 9(1), 76–83 (1970). https://doi.org/10.2514/3.6126

    Article  Google Scholar 

  10. Brush, J.C., Jr., Adali, S., Sadek, I.S., Sloss, J.M.: Structural control of thermoelastic beams for vibration suppression. J. Therm. Stresses 16(3), 249–263 (1993). https://doi.org/10.1080/01495739308946229

    Article  Google Scholar 

  11. Manolis, G.D., Beskos, D.E.: Thermally induced vibrations of beam structures. Comput. Methods Appl. Mech. 21(3), 337–355 (1980). https://doi.org/10.1016/0045-7825(80)90101-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Hill, D.L., Mazumdar, J.: A Study of the thermally induced large amplitude vibrations of viscoelastic plates and shallow shells. J. Sound Vib. 116(2), 323–337 (1987). https://doi.org/10.1016/S0022-460X(87)81305-6

    Article  Google Scholar 

  13. Tauchert, T.R.: Thermal shock of orthotropic rectangular plates. J. Therm. Stresses 12(2), 241–258 (1989). https://doi.org/10.1080/01495738908961964

    Article  MathSciNet  Google Scholar 

  14. Khdeir, A.A.: Thermally induced vibration of cross-ply laminated shallow shells. Acta Mech. 151(3–4), 135–147 (2001). https://doi.org/10.1007/BF01246913

    Article  MATH  Google Scholar 

  15. Khdeir, A.A.: Thermally induced vibration of cross-ply laminated shallow arches. J. Therm. Stresses 24(11), 1085–1096 (2001). https://doi.org/10.1080/01495730152620078

    Article  Google Scholar 

  16. Chang, J.S., Shyong, J.W.: Thermally induced vibration of laminated circular cylindrical shell panels. J. Therm. Stresses 51(3), 419–427 (1994). https://doi.org/10.1016/0266-3538(94)90110-4

    Article  Google Scholar 

  17. Chang, J.S., Wang, J.H., Tsai, T.Z.: Thermally induced vibrations of thin laminated plates by finite element method. Comput. Struct. 42(1), 117–128 (1991). https://doi.org/10.1016/0045-7949(92)90541-7

    Article  Google Scholar 

  18. Raja, S., Sinha, P.K., Prathap, G., Dwarakanathan, D.: Thermally induced vibration control of composite plates and shells with piezoelectric active damping. Smart Mater. Struct. 13(4), 939–950 (2001). https://doi.org/10.1088/0964-1726/13/4/032

    Article  Google Scholar 

  19. Pandey, S., Pradyumna, S.: A finite element formulation for thermally induced vibrations of functionally graded material sandwich plates and shell panels. Compos. Struct. 160(2), 877–886 (2017). https://doi.org/10.1016/j.compstruct.2016.10.040

    Article  Google Scholar 

  20. Alipour, S.M., Kiani, Y., Eslami, M.R.: Rapid heating of FGM rectangular plates. Acta Mech. 227(2), 421–436 (2016). https://doi.org/10.1007/s00707-015-1461-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Kiani, Y., Eslami, M.R.: Geometrically non-linear rapid heating of temperature-dependent circular FGM plates. J. Therm. Stresses 37(12), 1495–1518 (2014). https://doi.org/10.1080/01495739

    Article  Google Scholar 

  22. Ghiasian, S.E., Kiani, Y., Eslami, M.R.: Nonlinear rapid heating of FGM beams. Int. J. Non-Lin. Mech. 67(1), 74–84 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.08.006

    Article  Google Scholar 

  23. Keibolahi, A., Kinai, Y., Eslami, M.R.: Nonlinear rapid heating of shallow arches. J. Therm. Stresses 41(10–12), 1244–1258 (2018). https://doi.org/10.1080/01495739

    Article  Google Scholar 

  24. Sundararajan, N., Ganapathi, M.: Dynamic thermal buckling of functionally graded spherical caps. Eng Mech 134(2), 206–209 (2008). https://doi.org/10.1061/(ASCE)0733-9399(2008)134:2(206)

    Article  Google Scholar 

  25. Javani, M., Kiani, Y., Eslami, M.R.: Geometrically nonlinear rapid surface heating of temprature-depandant FGM arches. Aerosp. Sci. Technol. 90(7), 264–274 (2019). https://doi.org/10.1016/j.ast.2019.04.049

    Article  Google Scholar 

  26. Javani, M., Kiani, Y., Eslami, M.R.: Large amplitude thermally induced vibrations of temperature dependent annular FGM plates. Compos. Part B Eng. 163, 371–383 (2019). https://doi.org/10.1016/j.compositesb.2018.11.018

    Article  Google Scholar 

  27. Javani, M., Kiani, Y., Eslami, M.R.: Nonlinear axisymmetric response of temperature-dependent FGM conical shells under rapid heating. Acta Mech. 230(9), 3019–3039 (2019). https://doi.org/10.1007/s00707-019-02459-y

    Article  MathSciNet  MATH  Google Scholar 

  28. Javani, M., Kiani, Y., Sadighi, M., Eslami, M.R.: Nonlinear vibration behavior of rapidly heated temperature-dependent FGM shallow spherical shells. AIAA J. 57(9), 4071–4084 (2019). https://doi.org/10.2514/1.J058240

    Article  Google Scholar 

  29. Javani, M., Kiani, Y., Eslami, M.R.: Rapid heating vibrations of FGM annular sector plates. Eng. Comput. 37(1), 305–322 (2021). https://doi.org/10.1007/s00366-019-00825-x

    Article  Google Scholar 

  30. Esmaeili, H.R., Arvin, H., Kiani, Y.: Axisymmetric nonlinear rapid heating of FGM cylindrical shells. J. Therm. Stresses 42(4), 490–505 (2019). https://doi.org/10.1080/01495739

    Article  Google Scholar 

  31. Eslami, M.R.: Buckling and Postbuckling of Beams, Plates, and Shells. Springer, Berlin (2018)

    Book  Google Scholar 

  32. Zhen, W., Wang, J., Ren, X.: Effects of hygro-thermo-mechanical loading on composite plate resting on elastic foundation. Arch. Appl. Mech. 85(12), 1825–1846 (2015). https://doi.org/10.1007/s00419-015-1021-8

    Article  Google Scholar 

  33. Jalaei, M.H., Civalek, O.: On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int. J. Eng. Sci. 143, 14–32 (2019). https://doi.org/10.1016/j.ijengsci.2019.06.013

    Article  MathSciNet  MATH  Google Scholar 

  34. Akbas, S.D., Ersoy, H., Akgoz, B., Civalek, O.: Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz method. Mathematics 9(9), 1048 (2021). https://doi.org/10.3390/math9091048

    Article  Google Scholar 

  35. Akbas, S.D., Ersoy, H., Akgoz, B., Civalek, O.: Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 9(13), 1536 (2021). https://doi.org/10.3390/math9131536

    Article  Google Scholar 

  36. Akgoz, B., Civalek, O.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20(4), 606–616 (2014). https://doi.org/10.1177/1077546312463752

    Article  MathSciNet  Google Scholar 

  37. Jun, L., Yuchen, B., Peng, H.: A dynamic stiffness method for analysis of thermal effect on vibration and buckling of a laminated composite beam. Arch. Appl. Mech. 87(4), 1295–1315 (2017). https://doi.org/10.1007/s00419-017-1250-0

    Article  Google Scholar 

  38. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells, Theory and Application. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  39. Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

Download references

Funding

This article has received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kiani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, M.M., Keibolahi, A., Kiani, Y. et al. Application of Ritz method to large amplitude rapid surface heating of FGM shallow arches. Arch Appl Mech 92, 1287–1301 (2022). https://doi.org/10.1007/s00419-022-02106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02106-4

Keywords

Navigation