Skip to main content
Log in

Magnetic effect on the creeping flow around a slightly deformed semipermeable sphere

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents steady axisymmetric creeping motion of a conducting, incompressible viscous fluid past a weakly permeable slightly deformed sphere in the presence of transverse magnetic field. The Stokes approximation of momentum equation and Darcy’s law together with Lorentz force are used for the flow outside and within the semi-permeable particle. The governing equations are changed into dimensionless form, and resulting equations are solved using separation of variables method. We have determined the resistance force exerted on the oblate spheroid in the presence of magnetic field as a particular case of an approximate sphere. The impact of Hartmann numbers, permeability and deformation parameter on the coefficient of drag and the streamline pattern is exhibited graphically. Some special cases are deduced from the current study and compared with some previous results. The outcome clarifies that the Hartmann numbers enhance the drag on the oblate spheroid in comparison with prolate spheroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Darcy, H.: Les Fontaines Publiques. De La Ville De Dijon. Lond. Ser. Proc. R. Soc. 83, 357–369 (1910)

  2. Joseph, D.D., Tao, L.N.: The effect of permeability on the slow motion of a porous sphere in a viscous. ZAMM 44, 361–364 (1964). https://doi.org/10.1002/zamm.19640440804

    Article  MATH  Google Scholar 

  3. Happel, J., Brenner, H.: Low Reynolds number hydrodynamics. Prentice-Hall, Englewood Cliffs (1965)

    MATH  Google Scholar 

  4. Palaniappan, D.: Creeping flow about a slightly deformed sphere. ZAMP 45, 832–838 (1994). https://doi.org/10.1007/BF00942756

    Article  MathSciNet  MATH  Google Scholar 

  5. Ramkissoon, H.: Slip flow past an approximate spheroid. Acta Mech. 123, 227–233 (1997). https://doi.org/10.1007/BF01178412

    Article  MathSciNet  MATH  Google Scholar 

  6. Ramkissoon, H.: Stokes flow past a slightly deformed fluid sphere. J. Appl. Math. Phys. 37, 859–866 (1986). https://doi.org/10.1007/BF00953677

    Article  MATH  Google Scholar 

  7. Srinivasacharya, D.: Creeping flow past a porous approximate sphere. Zeitschrift fur Angew. Math. und Mech. 83, 499–504 (2003). https://doi.org/10.1002/zamm.200310023

    Article  MATH  Google Scholar 

  8. Srinivasacharya, D., Madasu, K.P.: Creeping flow past a porous approximate sphere—stress jump boundary condition. Zeitschrift fur Angew. Math. und Mech. 91, 824–831 (2011). https://doi.org/10.1002/zamm.201000138

    Article  MathSciNet  MATH  Google Scholar 

  9. Deo, S., Gupta, B.R.: Stokes flow past a swarm of porous approximately spheroidal particles with Kuwabara boundary condition. Acta Mech. 203, 241–254 (2009). https://doi.org/10.1007/s00707-008-0048-0

    Article  MATH  Google Scholar 

  10. Shapovalov, V.M.: Viscous fluid flow around a semipermeable particle. J. Appl. Mech. Tech. Phys. 50, 584–588 (2009). https://doi.org/10.1007/s10808-009-0079-x

    Article  MATH  Google Scholar 

  11. Deo, S., Gupta, B.R.: Drag on a porous sphere embedded in another porous medium. J. Porous Media. 13, 1009–1016 (2010). https://doi.org/10.1615/JPorMedia.v13.i11.70

    Article  Google Scholar 

  12. Yadav, P.K., Tiwari, A., Deo, S., Filippov, A., Vasin, S.: Hydrodynamic permeability of membranes built up by spherical particles covered by porous shells: effect of stress jump condition. Acta Mech. 215, 193–209 (2010). https://doi.org/10.1007/s00707-010-0331-8

    Article  MATH  Google Scholar 

  13. Yadav, P.K., Deo, S., Yadav, M.K., Filippov, A.: On hydrodynamic permeability of a membrane built up by porous deformed spheroidal particles. Colloid J. 75, 611–622 (2013). https://doi.org/10.1134/S1061933X13050165

    Article  Google Scholar 

  14. Yadav, P.K., Deo, S.: Stokes flow past a porous spheroid embedded in another porous medium. Meccanica 47, 1499–1516 (2012). https://doi.org/10.1007/s11012-011-9533-y

    Article  MathSciNet  MATH  Google Scholar 

  15. Jaiswal, B.R., Gupta, B.R.: Stokes flow over composite sphere: liquid core with permeable shell. J. Appl. Fluid Mech. 8, 339–350 (2015). https://doi.org/10.18869/acadpub.jafm.67.222.23135

    Article  Google Scholar 

  16. Yadav, P.K., Tiwari, A., Singh, P.: Hydrodynamic permeability of a membrane built up by spheroidal particles covered by porous layer. Acta Mech. 229(4), 1869–1892 (2018). https://doi.org/10.1007/s00707-017-2054-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Tiwari, A., Yadav, P.K., Singh, P.: Stokes flow through assemblage of non-homogeneous porous cylindrical particles using cell model technique. Natl. Acad. Sci. Lett. 41(1), 53–57 (2018). https://doi.org/10.1007/s40009-017-0605-y

    Article  MathSciNet  Google Scholar 

  18. Mishra, V., Gupta, B.R.: Drag experienced by a composite sphere in an axisymmetric creeping flow of micropolar fluid. J. Appl. Fluid Mech. 11, 995–1004 (2018). https://doi.org/10.29252/jafm.11.04.27870

    Article  Google Scholar 

  19. Yadav, P.K.: Motion through a non-homogeneous porous medium: hydrodynamic permeability of a membrane composed of cylindrical particles. Eur. Phys. J. Plus 133, 1–26 (2018). https://doi.org/10.1140/epjp/i2018-11804-8

    Article  Google Scholar 

  20. Tiwari, A., Shah, P.D., Chauhan, S.S.: Analytical study of micropolar fluid flow through porous layered micro vessels with heat transfer approach. Eur. Phys. J. Plus 135(2), 1–32 (2020). https://doi.org/10.1140/epjp/s13360-020-00128-x

    Article  Google Scholar 

  21. Yadav, P.K., Tiwari, A., Singh, P.: Motion through spherical droplet with non-homogenous porous layer in spherical container. Appl. Math. Mech. 41, 1069–1082 (2020). https://doi.org/10.1007/s10483-020-2628-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Stewartson, K.: Motion of a sphere through a conducting fluid in the presence of a strong magnetic field. Math. Proc. Camb. Philos. Soc. 52, 301–316 (1956). https://doi.org/10.1017/S0305004100031285

    Article  MathSciNet  MATH  Google Scholar 

  23. Rudraiah, N., Ramaiah, B.K., Rajasekhar, B.M.: Hartmann flow over a permeable bed. Int. J. Eng. Sci. 13, 1–24 (1975). https://doi.org/10.1016/0020-7225(75)90070-1

    Article  MATH  Google Scholar 

  24. Devi, S.P.A., Raghavachar, M.R.: Magnetohydrodynamic stratified flow past a sphere. Int. J. Eng. Sci. 20, 1169–1177 (1982). https://doi.org/10.1016/0020-7225(82)90097-0

    Article  MATH  Google Scholar 

  25. Cramer, K.R., Pai, S.I.: Magnetofluid dynamics for engineers and applied physicists. MacGraw-Hill, New York (1973)

    Google Scholar 

  26. Davidson, P.A.: An introduction to magnetohydrodynamics. Cambridge University Press, London (2001)

    Book  Google Scholar 

  27. Geindreau, C., Auriault, J.L.: Magnetohydrodynamic flows in porous media. J. Fluid Mech. 466, 343–363 (2002). https://doi.org/10.1017/S0022112002001404

    Article  MathSciNet  MATH  Google Scholar 

  28. Jayalakshmamma, D.V., Dinesh, P.A., Sankar, M.: Analytical study of creeping flow past a composite sphere: solid core with porous shell in presence of magnetic field. Mapana J. Sci. 10, 11–24 (2011). https://doi.org/10.12723/mjs.19.2

    Article  Google Scholar 

  29. Srivastava, B.G., Yadav, P.K., Deo, S., Singh, P.K., Filippov, A.: Hydrodynamic permeability of a membrane composed of porous spherical particles in the presence of uniform magnetic field. Colloid J. 76, 725–738 (2014). https://doi.org/10.1134/S1061933X14060167

    Article  Google Scholar 

  30. Verma, V.K., Singh, S.K.: Magnetohydrodynamic flow in a circular channel filled with a porous medium. J. Porous Media. 18, 923–928 (2015). https://doi.org/10.1615/JPorMedia.v18.i9.80

    Article  Google Scholar 

  31. Yadav, P.K., Deo, S., Singh, S.P., Filippov, A.: Effect of magnetic field on the hydrodynamic permeability of a membrane built up by porous spherical particles. Colloid J. 79, 160–171 (2017). https://doi.org/10.1134/S1061933X1606020X

    Article  Google Scholar 

  32. Ansari, I.A., Deo, S.: Magnetohydrodynamic viscous fluid flow past a porous sphere embedded in another porous medium. Spec. Top. Rev. Porous Media 9, 191–200 (2018). https://doi.org/10.1615/SpecialTopicsRevPorousMedia.v9.i2.70

    Article  Google Scholar 

  33. Saad, E.I.: Effect of magnetic fields on the motion of porous particles for happel and Kuwabara models. J. Porous Media. 21, 637–664 (2018). https://doi.org/10.1615/JPorMedia.v21.i7.50

    Article  Google Scholar 

  34. Madasu, K.P., Bucha, T.: Effect of magnetic field on the steady viscous fluid flow around a semipermeable spherical particle. Int. J. Appl. Comput. Math. 5, 1–10 (2019). https://doi.org/10.1007/s40819-019-0668-1

    Article  MathSciNet  MATH  Google Scholar 

  35. Yadav, P.K.: Influence of magnetic field on the stokes flow through porous spheroid: Hydrodynamic permeability of a membrane using cell model technique. Int. J. Fluid Mech. Res. 47, 273–290 (2020). https://doi.org/10.1615/InterJFluidMechRes.2020030464

    Article  Google Scholar 

  36. Yadav, P.K., Jaiswal, S., Puchakatla, J.Y., Yadav, M.K.: Flow through membrane built up by impermeable spheroid coated with porous layer under the influence of uniform magnetic field: effect of stress jump condition. Eur. Phys. J. Plus 136, 1–34 (2021). https://doi.org/10.1140/epjp/s13360-020-00990-9

    Article  Google Scholar 

  37. Madasu, K.P., Bucha, T.: Effect of magnetic field on the slow motion of a porous spheroid: Brinkman’s model. Arch. Appl. Mech. 91, 1739–1755 (2021). https://doi.org/10.1007/s00419-020-01852-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravendra Prasad Namdeo or Bali Ram Gupta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We get the following equations by using the boundary conditions (Eq. 15)–(Eq. 17) to the 1st order in \({\beta }_{m}\):

$$\left[ {1 + a_{2} + b_{2} K_{{\frac{3}{2}}} \left( \alpha \right) - c_{2} } \right]P_{1} \left( \zeta \right) + \left[ {2 - a_{2} - b_{2} \left( {\alpha K_{{\frac{1}{2}}} \left( \alpha \right) + K_{{\frac{3}{2}}} \left( \alpha \right)} \right) - 2c_{2} } \right]P_{1} \left( \zeta \right)G_{m} \left( \zeta \right)\beta _{m} + \sum\limits_{{n = 3}}^{\infty } {\left[ {A_{n} + B_{n} K_{{n - \frac{1}{2}}} \left( \alpha \right) - C_{n} } \right]} P_{{n - 1}} (\zeta ) = 0,$$
(39)
$$\left[ {2 - a_{2} - b_{2} \left( {\alpha K_{{\frac{1}{2}}} \left( \alpha \right) + K_{{\frac{3}{2}}} \left( \alpha \right)} \right)} \right]G_{2} \left( \zeta \right) + \left[ {2 + 2a_{2} + b_{2} (\alpha ^{2} + 2)K_{{\frac{3}{2}}} \left( \alpha \right)} \right]G_{2} \left( \zeta \right)G_{m} \left( \zeta \right)\beta _{m} + \sum\limits_{{n = 3}}^{\infty } {\left[ {\left( {1 - n} \right)A_{n} - B_{n} \left( {\left( {n - 1} \right)K_{{n - \frac{1}{2}}} \left( \alpha \right) + \alpha K_{{n + \frac{1}{2}}} \left( \alpha \right)} \right)} \right]} G_{n} (\zeta ) = 0,$$
(40)
$$\left[{\alpha }^{2}-\frac{{\alpha }^{2}}{2}{a}_{2}-{\beta }^{2}{c}_{2}\right]{P}_{1}\left(\zeta \right)+\left[{\alpha }^{2}+{\alpha }^{2}{a}_{2}-{\beta }^{2}{c}_{2}\right]\beta {}_{m}{G}_{m}\left(\zeta \right){P}_{1}\left(\zeta \right)-\sum_{n=3}^{\infty }\left[\frac{{\alpha }^{2}}{n}{A}_{n}+\frac{{\beta }^{2}}{n-1}{C}_{n}\right]{P}_{n-1}(\zeta )=0.$$
(41)

Equating the leading terms of Eqs. (39) to (41) to zero, we obtain.

$$1 + a_{2} + b_{2} K_{{\frac{3}{2}}} \left( \alpha \right) - c_{2} = 0,$$
(42)
$$2 - a_{2} - b_{2} \left( {\alpha K_{{\frac{1}{2}}} \left( \alpha \right) + K_{{\frac{3}{2}}} \left( \alpha \right)} \right) = 0,$$
(43)
$${\alpha }^{2}-\frac{{\alpha }^{2}}{2}{a}_{2}-{\beta }^{2}{c}_{2}=0.$$
(44)

Solving Eqs. (42)–(44), we find that

$$\left. {\begin{array}{*{20}c} {a_{2} = \frac{{2\left[ {\alpha ^{2} \left( {\alpha K_{{\frac{1}{2}}} \left( \alpha \right) + K_{{\frac{3}{2}}} \left( \alpha \right)} \right) - \beta ^{2} \left( {\alpha K_{{\frac{1}{2}}} \left( \alpha \right) + 3K_{{\frac{3}{2}}} \left( \alpha \right)} \right)} \right]}}{{\alpha \left( {\alpha ^{2} K_{{\frac{1}{2}}} \left( \alpha \right) + 2\beta ^{2} K_{{\frac{1}{2}}} \left( \alpha \right) + \alpha K_{{\frac{3}{2}}} \left( \alpha \right)} \right)}},} \\ {b_{2} = \frac{{6\beta ^{2} }}{{\alpha \left( {\alpha ^{2} K_{{\frac{1}{2}}} \left( \alpha \right) + 2\beta ^{2} K_{{\frac{1}{2}}} \left( \alpha \right) + \alpha K_{{\frac{3}{2}}} \left( \alpha \right)} \right)}},} \\ {c_{2} = \frac{{3\alpha \left( {\alpha K_{{\frac{1}{2}}} \left( \alpha \right) + K_{{\frac{3}{2}}} \left( \alpha \right)} \right)}}{{\left( {\alpha ^{2} K_{{\frac{1}{2}}} \left( \alpha \right) + 2\beta ^{2} K_{{\frac{1}{2}}} \left( \alpha \right) + \alpha K_{{\frac{3}{2}}} \left( \alpha \right)} \right)}}.} \\ \end{array} } \right\}$$
(45)

Substituting these above values into (39)–(41), we obtain

$$\left[ { - \frac{{6\alpha \left( {\alpha K_{{\frac{1}{2}}} \left( \alpha \right) + K_{{\frac{3}{2}}} \left( \alpha \right)} \right)}}{{\alpha \left( {\alpha ^{2} K_{{\frac{1}{2}}} \left( \alpha \right) + 2\beta ^{2} K_{{\frac{1}{2}}} \left( \alpha \right) + \alpha K_{{\frac{3}{2}}} \left( \alpha \right)} \right)}}} \right]\beta _{m} G_{m} \left( \zeta \right)P_{1} \left( \zeta \right) + \sum\limits_{{n = 3}}^{\infty } {\left[ {A_{n} + B_{n} K_{{n - \frac{1}{2}}} \left( \alpha \right) - C_{n} } \right]} P_{{n - 1}} (\zeta ) = 0,$$
(46)
$$\left[ {\frac{{6\alpha ^{2} \left( {\alpha K_{{\frac{1}{2}}} \left( \alpha \right) + K_{{\frac{3}{2}}} \left( \alpha \right) + \beta ^{2} K_{{\frac{3}{2}}} \left( \alpha \right)} \right)}}{{\alpha \left( {\alpha ^{2} K_{{\frac{1}{2}}} \left( \alpha \right) + 2\beta ^{2} K_{{\frac{1}{2}}} \left( \alpha \right) + \alpha K_{{\frac{3}{2}}} \left( \alpha \right)} \right)}}} \right]\beta _{m} G_{m} \left( \zeta \right)G_{2} \left( \zeta \right) + \sum\limits_{{n = 3}}^{\infty } {\left[ {\left( {1 - n} \right)A_{n} + B_{n} (nK_{{n - \frac{1}{2}}} \left( \alpha \right) - \alpha K_{{n + \frac{1}{2}}} \left( \alpha \right))} \right]} G_{n} (\zeta ) = 0,$$
(47)
$$\left[ {3\alpha ^{2} \left( {\alpha ^{2} - \beta ^{2} } \right)K_{{\frac{1}{2}}} \left( \alpha \right) + 3\alpha \left( {\alpha ^{2} - 3\beta ^{2} } \right)K_{{\frac{3}{2}}} \left( \alpha \right)} \right]\beta _{m} G_{m} \left( \zeta \right)P_{1} \left( \zeta \right) - \sum\limits_{{n = 3}}^{\infty } {\left[ {\frac{{\alpha ^{2} }}{n}A_{n} + \frac{{\beta ^{2} }}{{n - 1}}C_{n} } \right]} P_{{n - 1}} (\zeta ) = 0.$$
(48)

To solve above three equations for remaining arbitrary constants \({A}_{n}, {B}_{n} \mathrm{and} {C}_{n},\) we require the identity.

$${G}_{m}\left(\zeta \right){G}_{2}\left(\zeta \right)=\frac{-\left(m-2\right)(m-3)}{2\left(2m-1\right)(2m-3)}{G}_{m-2}\left(\zeta \right)+\frac{m(m-1)}{\left(2m+1\right)(2m-3)}{G}_{m}\left(\zeta \right)-\frac{(m+1)(m+2)}{2\left(2m-1\right)(2m+1)}{G}_{m+2}\left(\zeta \right),$$
(49)

and

$${G}_{m}\left(\zeta \right){P}_{1}\left(\zeta \right)=\frac{\left(m-2\right)}{\left(2m-1\right)(2m-3)}{P}_{m-3}\left(\zeta \right)+\frac{1}{\left(2m+1\right)(2m-3)}{P}_{m-1}\left(\zeta \right)-\frac{(m+1)}{\left(2m-1\right)(2m+1)}{P}_{m+1}\left(\zeta \right),$$
(50)

valid for \(m>2\). Using these above identities in equations (46) to (48) when \(n\ne m-2\), \(m\), \(m+2\), we see that the coefficient identically becomes to zero, that is

$${A}_{n}={B}_{n}={C}_{n}=0.$$
(51)

On the other hand, the system of equations in terms of \({A}_{n}, {B}_{n} \mathrm{and} {C}_{n},\) when \(n\) is equal to \(m-2\), \(m\), and \(m+2\), we get the following expressions:

$${\Delta }_{1}{\Phi }_{n}+{A}_{n}+{B}_{n}{K}_{n-\frac{1}{2}}\left(\alpha \right)-{C}_{n}=0,$$
(52)
$${\Delta }_{2}{\lambda }_{n}+{\left(1-n\right)A}_{n}+{B}_{n}\left(n{K}_{n-\frac{1}{2}}\left(\alpha \right){-\alpha K}_{n+\frac{1}{2}}\left(\alpha \right)\right)=0,$$
(53)
$${\Delta }_{3}{\Phi }_{n}-\frac{{\alpha }^{2}}{n}{A}_{n}-\frac{{\beta }^{2}}{n-1}{C}_{n}=0,$$
(54)

where

$$\left. {\begin{array}{*{20}c} {\Delta _{1} = 2 - a_{2} - b_{2} \left( {\alpha K_{{\frac{1}{2}}} \left( \alpha \right) + K_{{\frac{3}{2}}} \left( \alpha \right)} \right) - 2c_{2} ,} \\ {\Delta _{2} = 2 + 2a_{2} + b_{2} \left( {\alpha ^{2} + 2} \right)K_{{\frac{3}{2}}} \left( \alpha \right),} \\ {\Delta _{3} = \alpha ^{2} + \alpha ^{2} a_{2} + \beta ^{2} c_{2} ,} \\ {\Phi _{n} = \frac{{\beta _{n} }}{{\left( {2n + 1} \right)\left( {2n - 3} \right)}},} \\ {\lambda _{n} = \frac{{n\left( {n - 1} \right)\beta _{n} }}{{\left( {2n + 1} \right)\left( {2n - 3} \right)}}.} \\ \end{array} } \right\}$$

Solving Eqs. (52) to (54), we get the expression for \({A}_{n} {B}_{n}\) and \({C}_{n}\), when \(n= m-2\), \(m\), \(m+2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namdeo, R.P., Gupta, B.R. Magnetic effect on the creeping flow around a slightly deformed semipermeable sphere. Arch Appl Mech 92, 241–254 (2022). https://doi.org/10.1007/s00419-021-02053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02053-6

Keywords

Navigation