Skip to main content
Log in

A study on the mechanical response of magnesium using an anisotropic elasticity twinning CP FEM

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Magnesium and its alloys are used in many applications due to their high strength-to-weight ratios. The poor formability which is caused by lack of available slip systems and the existence of twinning has been the major hindrance in expanding their usage to other new applications. In order to improve the formability of magnesium and its alloys, it is critical to understand the characteristics of the available slip and twin systems and the interactions among them. The slip activities occur due to dislocation motions, and twinning and dislocation motions interact with each other in order to reduce the overall plastic dissipation energy in deformation. Since the complex interaction hardening among slip and twin modes is not automatically realized by conventional standard CP (crystal plasticity) theories, additional measures must be included in the crystal plasticity constitutive theory to accurately represent the mechanical behavior of magnesium and its alloys. This paper takes into account interaction hardening among slip and twin modes by employing an interaction hardening model based on a physical property (saturation strength), which reduces trials and errors significantly in the stress–strain data fitting process. Taking into account elastic anisotropy, a twinning CP theory is proposed and an implicit time integration scheme for the proposed anisotropic elasticity twinning CP theory is derived in this study. The derived CP theory and the implicit time integration scheme are implemented into a large deformation FE code, and the single crystal channel-die compression tests and polycrystal uniaxial tension/compression tests of magnesium done in [1] are successfully reproduced by simulations. Using the anisotropic elasticity twinning CP FE code, the effects of strong elastic anisotropy on the convergence and stability of CP FE codes are investigated. Strong elastic anisotropy turns out to lower the stability and accuracy of CP FE codes, and the proposed implicit time integration scheme successfully overcomes these difficulties caused by strong elastic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The details of the multiplicative decomposition kinematics and the definition of the \({\hat{B}}\) configuration are referred to [28, 29]

  2. The mathematical symbol \(<>\) is defined as follows. \(\begin{aligned}<A> = A, \;\; \mathrm{if} \; A> 0 \\ <A> = 0, \;\; \mathrm{if} \; A \le 0 \end{aligned}\)

  3. In case the change in an explicitly updated variable is large, the residual in the NR loop, which is not fully implicit due to the explicitly updated variable, shows a linear decrease in the iteration vs logarithmic-error plot.

  4. \(\delta _{ij}\) is the Kronecker delta function, which is defined as:

    $$\begin{aligned} \delta _{ij} = \left\{ \begin{array}{l l} \displaystyle { 1 , \;\; \mathrm{if} \; i=j } \\ \displaystyle { 0 , \;\; \mathrm{if} \; i \ne j } \end{array} \right. \qquad \qquad \qquad \qquad \qquad (\mathrm{A}.2) \end{aligned}$$

References

  1. Kelley, E.W., Hosford, W.F.: The plastic deformation of magnesium. Technical report, (1967)

  2. Li, Hejie, Öchsner, Andreas, Yarlagadda, Prasad K.D .V., Xiao, Yin, Furushima, Tsuyoshi, Wei, Dongbin, Jiang, Zhengyi, Manabe, Ken-ichi: A new constitutive analysis of hexagonal close-packed metal in equal channel angular pressing by crystal plasticity finite element method. Contin. Mech. Thermodyn. 30, 69–82 (2018)

    Article  Google Scholar 

  3. Sim, Gi-Dong, Kim, Gyuseok, Lavenstein, Steven, Hamza, Mohamed H., Fan, Haidong, El-Awady, Jaafar A.: Anomalous hardening in magnesium driven by a size-dependent transition in deformation modes. Acta Mater. 144, 11–20 (2018)

    Article  Google Scholar 

  4. Hyun, C.S., Kim, M.S., Choi, S.-H., Shin, K.S.: Crystal plasticity FEM study of twinning and slip in a Mg single crystal by Erichsen test. Acta Mater. 156, 342–355 (2018)

    Article  Google Scholar 

  5. Jiang, Lin, Kumar, M Arul, Beyerlein, Irene J, Wang, Xin, Zhang, Dalong, Wu, Chuandong, Cooper, Chase, Rupert, Timothy J, Mahajan, Subhash, Lavernia, Enrique J, Schoenung, Julie M: Twin formation from a twin boundary in Mg during in-situ nanomechanical testing. Mater. Sci. Eng. A 759, 142–153 (2019)

    Article  Google Scholar 

  6. Huang, C., Elkhodary, K.I., Tang, S.: Resolving the diffusionless transformation process of twinning in single crystal plasticity theory. Int. J. Plast. 120, 220–247 (2019)

    Article  Google Scholar 

  7. Sim, Gi-Dong, Xie, Kelvin Y., Hemker, Kevin J., El-Awady, Jaafar A.: Effect of temperature on the transition in deformation modes in mg single crystals. Acta Mater. 178, 241–248 (2019)

    Article  Google Scholar 

  8. Kumar, MArul, Capolungo, L., McCabe, R.J., Tomé, C.N.: Characterizing the role of adjoining twins at grain boundaries in hexagonal close packed materials. Sci. Rep. 9, 3846 (2019)

    Article  Google Scholar 

  9. Zhang, K., Li, H., Liu, J.: Effect of yield surface distortion on the failure prediction of Mg alloy sheets. Arch. Appl. Mech. (2020). https://doi.org/10.1007/s00419-020-01760-w

    Article  Google Scholar 

  10. Şerban, D.A., Marsavina, L., Rusu, L., Negru, R.: Numerical study of the behavior of magnesium alloy AM50 in tensile and torsional loadings. Arch. Appl. Mech. 89, 911–917 (2019)

    Article  Google Scholar 

  11. Cheng, Jiahao, Shen, Jinlei, Mishra, Raj K., Ghosh, Somnath: Discrete twin evolution in Mg alloys using a novel crystal plasticity finite element model. Acta Mater. 149, 142–153 (2018)

    Article  Google Scholar 

  12. Zhang, Hongjia, Jrusalem, Antoine, Salvati, Enrico, Papadaki, Chrysanthi, Fong, Kai Soon, Song, Xu, Korsunsky, Alexander M: Multi-scale mechanisms of twinning-detwinning in magnesium alloy AZ31B simulated by crystal plasticity modeling and validated via in situ synchrotron XRD and in situ SEM-EBSD. Int. J. Plast. 119, 43–56 (2019)

    Article  Google Scholar 

  13. Wang, Baojie, Daokui, Xu, Sheng, Liyuan, Han, Enhou, Sun, Jie: Deformation and fracture mechanisms of an annealing-tailored “bimodal” grain-structured Mg alloy. J. Mater. Sci. Technol. 35, 2423–2429 (2019)

    Article  Google Scholar 

  14. Nie, Huihui, Hao, Xinwei, Kang, Xiaoping, Chen, Hongsheng, Chi, Chengzhong, Liang, Wei: Strength and plasticity improvement of AZ31 sheet by pre-inducing large volume fraction of 10–12 tensile twins. Mater. Sci. Eng. A 776, 139045 (2020)

    Article  Google Scholar 

  15. Yoshinaga, H., Horiuchi, R.: Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis. Trans. Jpn. Inst. Met. 4, 1–8 (1963)

    Article  Google Scholar 

  16. Obara, T., Yoshinga, H., Morozumi, S.: \(\{11{\bar{2}}2\} \left\langle 1123\right\rangle \) slip system in magnesium. Acta Metall. 21, 845–853 (1973)

    Article  Google Scholar 

  17. Ando, S., Tonda, H.: Towards resolving the anonymity of pyramidal slip in magnesium. Mater. Trans., Jpn. Inst. Met. Mater. 41, 1188–1191 (2000)

    Google Scholar 

  18. Xie, K.Y., Alam, Z., Caffee, A., Hemker, K.J.: Pyramidal i slip in c-axis compressed mg single crystals. Scr. Mater. 112, 75–78 (2016)

    Article  Google Scholar 

  19. Fan, H., El-Awady, J.A.: Towards resolving the anonymity of pyramidal slip in magnesium. Mater. Sci. Eng. A 644, 318–324 (2015)

    Article  Google Scholar 

  20. Tang, Y., El-Awady, J.A.: Highly anisotropic slip-behavior of pyramidal i<c+a> dislocations in hexagonal close-packed magnesium. Mater. Sci. Eng. A 618, 424–432 (2014)

    Article  Google Scholar 

  21. Graff, S., Brocks, W., Steglich, D.: Yielding of magnesium: from single crystal to polycrystalline aggregates. Int. J. Plast. 23, 1957–1978 (2007)

    Article  Google Scholar 

  22. Zhang, J., Joshi, S.P.: Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J. Mech. Phys. Solids 60, 945–972 (2012)

    Article  Google Scholar 

  23. Husser, Edgar, Bargmann, Swantje: Modeling twinning-induced lattice reorientation and slip-in-twin deformation. J. Mech. Phys. Solids 122, 315–339 (2019)

    Article  MathSciNet  Google Scholar 

  24. Vaishakh, K.V., Prasad, N.S., Narasimhan, R.: Numerical investigation of the origin of anomalous tensile twinning in magnesium alloys. J. Eng. Mater. Technol. 141, 031010-1-15 (2019)

    Article  Google Scholar 

  25. Briffod, Fabien, Shiraiwa, Takayuki, Enoki, Manabu: Numerical investigation of the influence of twinning/detwinning on fatigue crack initiation in AZ31 magnesium alloy. Mater. Sci. Eng. A 753, 79–90 (2019)

    Article  Google Scholar 

  26. Ren, Weijie, Xin, Renlong, Liu, Dejia: Modeling the strongly localized deformation behavior in a magnesium alloy with complicated texture distribution. Mater. Sci. Eng. A 762, 138103 (2019)

    Article  Google Scholar 

  27. Kweon, S.: Edge cracking in rolling of an aluminum alloy AA2024-O. PhD thesis, University of Illinois Urbana-Champaign, Urbana, Illinois, (2009)

  28. Kweon, S., Raja, Daniel S.: Investigation of the mechanical response of single crystal magnesium considering slip and twin. Int. J. Plast. 112, 1–17 (2019)

    Article  Google Scholar 

  29. Kweon, S., Raja, Daniel S: Investigation of the effects of twinning on the mechanical response of polycrystal magnesium. Arch. Appl. Mech. 91, 1469–1493 (2021)

    Article  Google Scholar 

  30. Kweon, S.: Damage at negative triaxiality. Eur. J. Mech. A/Solids 31, 203–212 (2012)

    Article  Google Scholar 

  31. Marin, E.B., Dawson, P.R.: On modelling the elasto-viscoplastic response of metals using polycrystal plasticity. Comput. Methods Appl. Mech. Engrg. 165, 1–21 (1998)

    Article  Google Scholar 

  32. Kweon, S.: Investigation of shear damage considering the evolution of anisotropy. J. Mech. Phys. Solids 61, 2605–2624 (2013)

    Article  MathSciNet  Google Scholar 

  33. Kweon, S., Raja, Daniel S: Comparison of anisotropy evolution in BCC and FCC metals using crystal plasticity and texture analysis. Eur. J. Mech. A/Solids 62, 22–38 (2017)

    Article  Google Scholar 

  34. Hosford, W.F.: The Mechanics of Crystals and Textured Polycrystals. Oxford University Press, New York (1993)

    Google Scholar 

  35. Kocks, U.F., Mecking, H.: Physics and phenomenology of strain hardening: the fcc case. Prog. Mater. Sci. 48, 171–273 (2003)

    Article  Google Scholar 

  36. Agnew, S.R., Yoo, M.H., Tomé, C.N.: Application of texture simulation to understanding mechanical behavior of mg and solid solution alloys containing li or y. Acta Mater. 49, 4277–4289 (2001)

    Article  Google Scholar 

  37. Kelley, E.W., Hosford, W.F.: Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 242, 5–13 (1968)

    Google Scholar 

  38. Bertin, N., Tomé, C.N., Beyerlein, I.J., Barnett, M.R., Capolungo, L.: On the strength of dislocation interactions and their effect on latent hardening in pure magnesium. Int. J. Plast. 62, 72–92 (2014)

    Article  Google Scholar 

  39. Morrow, B.M., Cerreta, E.K., McCabe, R.J., Tomé, C.N.: Toward understanding twin twin interactions in hcp metals: utilizing multiscale techniques to characterize deformation mechanisms in magnesium. Mater. Sci. Eng. A 613, 365–371 (2014)

    Article  Google Scholar 

  40. Voigt, W.: Lehrbuch Der Kristallphysik. B. G. Teubner, Leipzig, Germany (1928)

    MATH  Google Scholar 

  41. Tromans, Desmond: Elastic anisotropy and hcp metal crystals and polycrystals. Int. J. Recent Res. Appl. Stud. (IJRRAS) 6(4), 462–483 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The writers thank Southern Illinois University Edwardsville for providing a STEP (Seed grants for Transitional and Exploratory Projects) grant (“Investigation on the effect of anisotropy on the ductile fracture process of metals”), which supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kweon.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Jacobian matrix

Appendix A. Jacobian matrix

The expressions for components of the Jacobian matrix \(\bigg [ \frac{\partial [{{\mathbf {R}}}]}{\partial [{{\mathbf {V}}}]} \bigg ]\) are provided as follows:

$$\begin{aligned} \frac{\partial {\mathbf {R}}_{\varvec{\varepsilon }^*}}{\partial \varvec{\varepsilon }^*} = \frac{1}{\Delta t }\mathbb {S} + \frac{\partial \hat{{{\mathbf {D}}}}^{\mathrm{p}}}{\partial \varvec{\varepsilon }^*} +{\mathcal {N}} \end{aligned}$$
(A.1)

where \(\mathbb {S}\) denotes the fourth order identity matrix, i.e., \(\mathbb {S}_{ijkl} = \frac{1}{2}(\delta _{ik} \delta _{jl} + \delta _{il} \delta _{jk} )\),Footnote 4 and the fourth-order tensor \(\frac{\partial \hat{{{\mathbf {D}}}}^\mathrm{p}}{\partial \varvec{\varepsilon }^*} \) is defined as

$$\begin{aligned} \frac{\partial {\hat{D}}^{\mathrm{p}}_{ij}}{\partial {\varepsilon }^*_{kl}} = \left\{ \begin{aligned}&\sum _{\alpha =1}^{N_s} n {\dot{\gamma }}^0_{sl} \bigg | \frac{\mathbb {C}^{\mathrm{e}}:\varvec{\varepsilon }^*:\hat{{{\mathbf {P}}}}^{\alpha }}{\tau ^{(i)}_0} \bigg |^{n-1} \frac{1}{\tau ^{(i)}_0} {\hat{P}}^{\alpha }_{ij} \mathbb {C}^{\mathrm{e}}_{pqrs} \mathbb {S}_{rskl} {\hat{P}}^{\alpha }_{pq} \;+ \\&\sum _{\beta =1}^{N_{tw}}n {\dot{\gamma }}^0_{tw} \bigg <\frac{\mathbb {C}^{\mathrm{e}}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\beta }}{\tau ^{(i)}_0} \bigg >^{n-1} \frac{1}{\tau ^{(i)}_0} {\hat{P}}^{\beta }_{ij} \mathbb {C}^{\mathrm{e}}_{pqrs} \mathbb {S}_{rskl} {\hat{P}}^{\beta }_{pq} \end{aligned} \right. \end{aligned}$$
(A.3)

and the fourth-order tensor \({\mathcal {N}}\) is defined as:

$$\begin{aligned}&{\mathcal {N}}_{ijkl} = \mathbb {S}_{imkl}{\hat{W}}^{\mathrm{p}}_{mj} +\varepsilon ^*_{im}\frac{\partial {\hat{W}}^{\mathrm{p}}_{mj}}{\partial \varepsilon ^*_{kl}} -\bigg [ \frac{\partial {\hat{W}}^\mathrm{p}_{im}}{\partial \varepsilon ^*_{kl}} \varepsilon ^*_{mj} +{\hat{W}}^{\mathrm{p}}_{im} \mathbb {S}_{mjkl} \bigg ] \end{aligned}$$
(A.4)
$$\begin{aligned}&\frac{\partial {\mathbf {R}}_{\varvec{\varepsilon }^*}}{\partial f^{\alpha }} = {\mathbf {0}}_{( 9 \mathrm{x} N_{tw})} \end{aligned}$$
(A.5)

where \( {\mathbf {0}}_{( 9 \mathrm{x} N_{tw})}\) denotes a zero tensor of which dimension is 9 by \(N_{tw}\) and components are all zero.

$$\begin{aligned} \frac{\partial {\mathbf {R}}_{\varvec{\varepsilon }^*}}{\partial \tau _0^{(i)}}= & {} \frac{\partial \hat{{\mathbf {D}}}^{\mathrm{p}}}{\partial \tau _0^{(i)}} + \bigg (\varvec{\varepsilon }^*\frac{\partial \hat{{\mathbf {W}}}^{\mathrm{p}}}{\partial \tau _0^{(i)}} - \frac{\partial \hat{{\mathbf {W}}}^{\mathrm{p}}}{\partial \tau _0^{(i)}} \varvec{\varepsilon }^* \bigg ) \end{aligned}$$
(A.6)
$$\begin{aligned} \frac{\partial \hat{{\mathbf {D}}}^{\mathrm{p}}}{\partial \tau _0^{(i)}}= & {} \sum _{\alpha =1}^{N_s} \frac{\partial {\dot{\gamma }}^{\alpha }}{\partial \tau _0^{(i)}} \hat{{\mathbf {P}}}^{\alpha } + \sum _{\beta =1}^{N_{tw}} \frac{\partial {\dot{\gamma }}^{\beta }}{\partial \tau _0^{(i)}} \hat{{\mathbf {P}}}^{\beta } \end{aligned}$$
(A.7)
$$\begin{aligned} \frac{\partial {\dot{\gamma }}^{\alpha }}{\partial \tau _0^{(i)}}= & {} n {\dot{\gamma }}^0_{sl} \bigg | \frac{\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }}{\tau _0^{(i)}} \bigg |^{(n-1)} (\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }) (-1) (\tau _0^{(i)})^{-2} \end{aligned}$$
(A.8)
$$\begin{aligned} \frac{\partial {\dot{\gamma }}^{\beta }}{\partial \tau _0^{(i)}}= & {} n {\dot{\gamma }}^0_{tw} \bigg < \frac{\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\beta }}{\tau _0^{(i)}} \bigg >^{(n-1)} (\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\beta }) (-1) (\tau _0^{(i)})^{-2} \end{aligned}$$
(A.9)
$$\begin{aligned} \frac{\partial {R}_{f^{\alpha }}}{\partial \varvec{\varepsilon }^*}= & {} \left\{ \begin{array}{l l l} \displaystyle { - n\frac{{\dot{\gamma }}^0_{tw}}{\gamma ^{tw}} \bigg< \frac{\mathbb {C}^{\mathrm{e}}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }}{{\tau _0^{(i)}}} \bigg>^{n-1} \frac{1}{\tau _0^{(i)}} \mathbb {C}^{\mathrm{e}}:\mathbb {S}:\hat{{\mathbf {P}}}^{\alpha } , \;\; \mathrm{for} \;\; f^{\alpha }< f_{\mathrm{crit}} \;\mathrm{and} \;\;{\bar{r}}^{(i)}< {\bar{r}}_{\mathrm{crit}}} \\ \displaystyle { - n\frac{{\dot{\gamma }}^0_{tw}}{\gamma ^{tw}} \bigg < \frac{\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }}{{\tau _0^{(i)}}} \bigg >^{n-1} \frac{1}{\tau _0^{(i)}} \mathbb {C}^\mathrm{e}:\mathbb {S}:\hat{{\mathbf {P}}}^{\alpha }{\bar{r}}^{(i)} , \;\; \mathrm{for} \;\; f^{\alpha } \ge f_{\mathrm{crit}} \;\mathrm{or} \;\;{\bar{r}}^{(i)} \ge {\bar{r}}_{\mathrm{crit}}} \end{array} \right. \end{aligned}$$
(A.10)
$$\begin{aligned}&\frac{\partial {R}_{f^{\alpha }}}{\partial f^{\beta }} = \frac{1}{\Delta t} \delta _{\alpha \beta } \end{aligned}$$
(A.11)
$$\begin{aligned}&\begin{aligned}&\frac{\partial {R}_{f^{\alpha }}}{\partial \tau _0^{(i)}} = \left\{ \begin{array}{l l l l l} \displaystyle { 0, \;\; \mathrm{for } \; \mathrm{i=1}\;\mathrm{to}\;5 }\\ \\ \displaystyle { - n\frac{{\dot{\gamma }}^0_{tw}}{\gamma ^{tw}} \bigg< \frac{\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }}{{\tau _0^{(i)}}} \bigg>^{n-1} (\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }) (-1)(\tau _0^{(i)})^{-2}, \; \mathrm{for} \;\; f^{\alpha }< f_{\mathrm{crit}} \;\mathrm{and} \;\;{\bar{r}}^{(i)}< {\bar{r}}_{\mathrm{crit}}} \\ \displaystyle { - n\frac{{\dot{\gamma }}^0_{tw}}{\gamma ^{tw}} \bigg < \frac{\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }}{{\tau _0^{(i)}}} \bigg >^{n-1} (\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }) (-1)(\tau _0^{(i)})^{-2} {\bar{r}}^{(i)}, \; \mathrm{for} \;\; f^{\alpha } \ge f_{\mathrm{crit}} \;\mathrm{or} \;\;{\bar{r}}^{(i)} \ge {\bar{r}}_\mathrm{crit}} \end{array} \right. \end{aligned}\qquad \end{aligned}$$
(A.12)
$$\begin{aligned}&\begin{aligned}&h^{(i)}(\bar{\gamma }) = \left\{ \begin{array}{l l l l l} \displaystyle { h_0 \bigg ( 1- \frac{\tau _0}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) \exp {\bigg ( - \frac{h_0(\bar{\gamma }_0+\sum _{i=1}^{N_\mathrm{modes}}\Delta \bar{\gamma }^{(i)})}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg )}, \;\; \text {for i=1 to 5} } \\ \\ \left\{ \begin{array}{l l l} h_0 \times \eta , \;\;\;\mathrm{for}\; \bar{\gamma }^{(6)}\le \gamma _{\mathrm{ref}} \\ \displaystyle { h_0 \left( \frac{\bar{\gamma }^{(6)}}{\gamma _\mathrm{ref}} \right) ^{m-1} \times \eta }, \;\;\;\mathrm{for}\; \bar{\gamma }^{(6)} > \gamma _{\mathrm{ref}} \end{array} \right\} \; \text {for i=6 } \\ \displaystyle { h_0}, \; \;\; \text { for i=7} \end{array} \right. \end{aligned} \end{aligned}$$
(A.13)
$$\begin{aligned}&\zeta ^{(i)}=[ \xi , \zeta , 1, 1, 1]^T \end{aligned}$$
(A.14)
$$\begin{aligned}&\kappa ^{(i)}=[ 1, 1, 1, \kappa , \kappa ]^T \end{aligned}$$
(A.15)
$$\begin{aligned}&(\tau _{\infty })_0^{(i)}=[ 3, 73.44, 86.4, 198, 165]^T \end{aligned}$$
(A.16)
$$\begin{aligned}&\Delta \bar{\gamma }^{(i)} = \left\{ \begin{array}{l l l} \displaystyle { \sum _{\alpha =1}^{N^{(i)}}{\dot{\gamma }}^0_{sl} \bigg | \frac{\mathbb {C}^{\mathrm{e}}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }}{{\tau _0^{(i)}}} \bigg |^{n} \Delta t , \;\; \mathrm{for } \; \mathrm{i=1}\;\mathrm{to}\;5} \\ \displaystyle { \sum _{\beta =1}^{N^{(i)}}{\dot{\gamma }}^0_{tw} \bigg < \frac{\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\beta }}{{\tau _0^{(i)}}} \bigg >^{n} \Delta t , \;\; \mathrm{for } \; \mathrm{i=6}\; \mathrm{and} \;7} \end{array} \right. \end{aligned}$$
(A.17)

Note that \(N^{(i)}\) is the number of systems in a slip or twin mode.

$$\begin{aligned}&\frac{\partial {\mathbf {R}}_{\tau _0^{(i)}}}{\partial \varvec{\varepsilon }^*} = -\sum _{j=1}^{N_{\mathrm{modes}}}\frac{\partial h^{(i)}}{\partial \Delta \bar{\gamma }^{(j)}} \frac{\partial \Delta \bar{\gamma }^{(j)}}{\partial \varvec{\varepsilon }^*} \Delta \bar{\gamma }^{(i)} -h^{(i)}\frac{\partial \Delta \bar{\gamma }^{(i)}}{\partial \varvec{\varepsilon }^*}\nonumber \\&\quad -\sum _{j=1}^{N_{\mathrm{modes}}} q_{(i)(j)} \frac{\partial \Delta \bar{\gamma }^{(j)}}{\partial \varvec{\varepsilon }^*}, \;\; \text { no summation on (i)} \end{aligned}$$
(A.18)
$$\begin{aligned}&\begin{aligned}&\frac{\partial \Delta \bar{\gamma }^{(i)}}{\partial \varvec{\varepsilon }^*} = \left\{ \begin{array}{l l l} \displaystyle { \sum _{\alpha =1}^{N^{(i)}} n {\dot{\gamma }}^0_{sl} \bigg | \frac{\mathbb {C}^{\mathrm{e}}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }}{{\tau _0^{(i)}}} \bigg |^{n-1} \mathrm{sgn}(\mathbb {C}^{\mathrm{e}}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }) \frac{1}{\tau _0^{(i)}} (\mathbb {C}^{\mathrm{e}}:\mathbb {S}:\hat{{\mathbf {P}}}^{\alpha }) \Delta t , \;\; \mathrm{for } \; \mathrm{i=1}\;\mathrm{to}\;5 }\\ \displaystyle { \sum _{\beta =1}^{N^{(i)}} n {\dot{\gamma }}^0_{tw} \bigg < \frac{\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\beta }}{{\tau _0^{(i)}}} \bigg >^{n-1} \frac{1}{\tau _0^{(i)}} (\mathbb {C}^\mathrm{e}:\mathbb {S}:\hat{{\mathbf {P}}}^{\beta }) \Delta t, \;\; \mathrm{for} \; \mathrm{i=6}\;\mathrm{and}\;7} \end{array} \right. \end{aligned} \end{aligned}$$
(A.19)
$$\begin{aligned}&\begin{aligned}&\frac{\partial h^{(i)}}{\partial \Delta \bar{\gamma }^{(j)}} = \left\{ \begin{array}{l l l | |} \left. \begin{aligned} &{}\displaystyle { h_0 \bigg ( 1- \frac{\tau _0}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) \exp {\bigg ( - \frac{h_0 \bar{\gamma }}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) } \bigg ( -\frac{h_0}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg )} \\ &{}\displaystyle { + h_0 \bigg ( - \frac{\tau _0}{\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) (-1)(\zeta ^{(i)})^{-2} \frac{\partial \zeta ^{(i)}}{\partial \Delta {\bar{\gamma }}^{(j)}} \exp {\bigg ( - \frac{h_0 \bar{\gamma }}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) } \delta _{i2} } \\ &{}\displaystyle { + h_0 \bigg ( 1- \frac{\tau _0}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) \exp {\bigg ( - \frac{h_0 \bar{\gamma }}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) } \bigg ( -\frac{h_0 {\bar{\gamma }}}{\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg )*} \\ &{}\displaystyle {(-1)(\zeta ^{(i)})^{-2} \frac{\partial \zeta ^{(i)}}{\partial \Delta {\bar{\gamma }}^{(j)}}\delta _{i2} } \end{aligned} \;\; \right\} \mathrm{for } \; \mathrm{i=1}\;\mathrm{to}\;5\\ \left\{ \begin{aligned} &{}\displaystyle { \delta _{1j} h_0 \frac{\partial \eta }{\partial {\bar{\gamma }}^{(1)}}, \;\; \mathrm{for}\;\; {\bar{\gamma }}^{(6)} \le \gamma _{\mathrm{ref}} } \\ &{}\displaystyle { \delta _{6j}h_0(m-1)\bigg (\frac{{\bar{\gamma }}^{(6)}}{\gamma _\mathrm{ref}}\bigg )^{m-2}\frac{ \eta }{\gamma _{\mathrm{ref}}} + \delta _{1j} h_0 \bigg (\frac{{\bar{\gamma }}^{(6)}}{\gamma _{\mathrm{ref}}}\bigg )^{m-1} \frac{\partial \eta }{\partial {\bar{\gamma }}^{(1)}}, \;\; \mathrm{for}\;\; {\bar{\gamma }}^{(6)} > \gamma _{\mathrm{ref}}} \end{aligned} \;\; \right\} \mathrm{for} \; \mathrm{i=6} \\ \left. \displaystyle { 0 } \;\; \right\} \mathrm{for} \; \mathrm{i=7} \end{array} \right. \end{aligned} \end{aligned}$$
(A.20)
$$\begin{aligned}&\left\{ \begin{array}{l} \begin{aligned} &{}\frac{\partial \zeta ^{(i)}}{\partial \Delta {\bar{\gamma }}^{(j)}} = 0, \;\; \mathrm{except} \\ &{} \frac{\partial \zeta ^{(2)}}{\partial \Delta {\bar{\gamma }}^{(1)}} = \left\{ \begin{array}{l l l} 0, \;\; \mathrm{for} \; {\bar{\gamma }}^{(1)} \le {\bar{\gamma }}^{(1)}_{\mathrm{crit}} \\ 2.7563*0.2160*({\bar{\gamma }}^{(1)})^{(0.2160-1)}, \;\; \mathrm{for} \; {\bar{\gamma }}^{(1)}> {\bar{\gamma }}^{(1)}_{\mathrm{crit}} \end{array} \right. \\ &{} \frac{\partial \zeta ^{(2)}}{\partial \Delta {\bar{\gamma }}^{(5)}} = \left\{ \begin{array}{l l l} 0, \;\; \mathrm{for} \; {\bar{\gamma }}^{(5)} \le {\bar{\gamma }}^{(5)}_{\mathrm{crit}} \\ 1.559*0.0558*({\bar{\gamma }}^{(5)})^{(0.0558-1)}, \;\; \mathrm{for} \; {\bar{\gamma }}^{(5)} > {\bar{\gamma }}^{(5)}_{\mathrm{crit}} \end{array} \right. \end{aligned} \end{array} \right\} \end{aligned}$$
(A.21)
$$\begin{aligned}&\frac{\partial \eta }{\partial {\bar{\gamma }}^{(1)}} = 0.1 \times 10.5 \times (\gamma ^{(1)})^{-0.9} \end{aligned}$$
(A.22)
$$\begin{aligned}&\frac{\partial {\mathbf {R}}_{\tau _0^{(i)}}}{\partial f^{\alpha }} = -\frac{\partial h^{(i)}}{\partial f^{\alpha }} \Delta \bar{\gamma }^{(i)},\; \text {no summation on (i)} \end{aligned}$$
(A.23)
$$\begin{aligned}&\begin{aligned}&\frac{\partial h^{(i)}}{\partial f^{\alpha }}= \left\{ \begin{array}{l l l} \left. \begin{array}{l l l | |} \displaystyle { h_0 \bigg ( - \frac{\tau _0}{\zeta ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) (-1)(\kappa ^{(i)})^{-2} \frac{\partial \kappa ^{(i)}}{\partial f^{\alpha }} \exp {\bigg ( - \frac{h_0 \bar{\gamma }}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) } } \\ \displaystyle { + h_0 \bigg ( 1 - \frac{\tau _0}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) \exp {\bigg ( - \frac{h_0 \bar{\gamma }}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) } \times }\\ \displaystyle { \bigg \{ - \frac{h_0 \bar{\gamma }}{\zeta ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg \} (-1)(\kappa ^{(i)})^{-2} \frac{\partial \kappa ^{(i)}}{\partial f^{\alpha }} } \\ \displaystyle {+ h_0 \bigg ( - \frac{\tau _0}{\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) (-1)(\zeta ^{(i)})^{-2} \frac{\partial \zeta ^{(i)}}{\partial f^{\alpha }} \exp {\bigg ( - \frac{h_0 \bar{\gamma }}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) } } \\ \displaystyle { + h_0 \bigg ( 1 - \frac{\tau _0}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) \exp {\bigg ( - \frac{h_0 \bar{\gamma }}{\zeta ^{(i)}\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg ) } \times }\\ \displaystyle { \bigg \{ - \frac{h_0 \bar{\gamma }}{\kappa ^{(i)}(\tau _{\infty })_0^{(i)}} \bigg \} (-1)(\zeta ^{(i)})^{-2} \frac{\partial \zeta ^{(i)}}{\partial f^{\alpha }} } \end{array} \right\} \;\;\mathrm{for } \; \text { i=1 to 5}\\ \displaystyle {0, \;\; \text {for i=6 and 7}} \end{array} \right. \end{aligned} \end{aligned}$$
(A.24)
$$\begin{aligned}&\begin{aligned}&\frac{\partial \kappa ^{(i)}}{\partial f^{\alpha }}= \\&\left\{ \begin{array}{l l l} \displaystyle {0, \;\; \text {for i=1 to 3}}\\ \left\{ \begin{array}{l l l} \displaystyle { 3.3892\times 0.5956\times f_{TT}^{(0.5956-1)}\times \delta _{1-6,\alpha }+7.5\times \delta _{7-12,\alpha }, \text { for } ;f_{TT} \le f_{\mathrm{crit}}} \\ \left\{ \begin{array}{l l l} \displaystyle { 4.2128\times 10^{-11}\times \exp {(41.9051\times f_{TT})} } \\ \displaystyle { \times 41.9051\times \delta _{1-6,\alpha }+7.5\times \delta _{7-12,\alpha }} \end{array} \right\} , \;\; \mathrm{for}\;f_{TT} > f_{\mathrm{crit}} \end{array} \right\} \;\; \mathrm{for } \; \mathrm{i=4}\; \mathrm{and } \;5 \end{array} \right. \end{aligned} \end{aligned}$$
(A.25)
$$\begin{aligned}&\frac{\partial \zeta ^{(i)}}{\partial f^{\alpha }}= \left\{ \begin{aligned}&\displaystyle {0.1\times 13.49 \times f_{TT}^{-0.9}\times \delta _{1-6,\alpha }, \;\; \mathrm{for} \; \mathrm{i=1}} \\&0, \;\;\mathrm{for } \; \mathrm{i=2} \;\mathrm{to}\;5 \end{aligned} \right. \end{aligned}$$
(A.26)

where \(\delta _{1-6,\alpha }\) and \(\delta _{7-12,\alpha }\) are defined as follows:

$$\begin{aligned}&\delta _{1-6,\alpha } = \left\{ \begin{array}{l l l} 1, \;\; if\;\alpha =1 \;to\; 6 \\ 0, \;\; if\;\alpha =7 \;to\; 12 \end{array} \right. \end{aligned}$$
(A.27)
$$\begin{aligned}&\delta _{7-12,\alpha } = \left\{ \begin{array}{l l l} 0, \;\; if\;\alpha =1 \;to\; 6 \\ 1, \;\; if\;\alpha =7 \;to\; 12 \end{array} \right. \end{aligned}$$
(A.28)
$$\begin{aligned}&\begin{aligned} \frac{\partial {\mathbf {R}}_{\tau _0^{(i)}}}{\partial \tau _0^{(j)}}=\delta _{ij} -\bigg ( \frac{\partial h^{(i)}}{\partial \Delta {\bar{\gamma }}^{(j)}} \frac{\partial \Delta {\bar{\gamma }}^{(j)}}{\partial \tau _0^{(j)}} \Delta {\bar{\gamma }}^{(i)} + h^{(i)} \delta _{ij} \frac{\partial \Delta {\bar{\gamma }}^{(i)}}{\partial \tau _0^{(j)}} \bigg ) \\ -q_{(i)(j)}\frac{\partial \Delta {\bar{\gamma }}^{(j)}}{\partial \tau _0^{(j)}},\;\;\mathrm{no\;summation\;on\;}(i)\;\mathrm{and}\; (j) \end{aligned} \end{aligned}$$
(A.29)
$$\begin{aligned}&\begin{aligned}&\frac{\partial \Delta {\bar{\gamma }}^{(j)}}{\partial \tau _0^{(j)}} = \left\{ \begin{array}{l l l} \displaystyle { \delta _{ij}\sum _{\alpha =1}^{N^{(i)}} n {\dot{\gamma }}^0_{sl} \bigg | \frac{\mathbb {C}^{\mathrm{e}}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }}{{\tau _0^{(i)}}} \bigg |^{n-1} \mathrm{sgn}(\mathbb {C}^{\mathrm{e}}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }) (\mathbb {C}^{\mathrm{e}}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\alpha }) (-1)( \tau _0^{(i)})^{-2} \Delta t , \;\; \mathrm{for} \; \mathrm{i=1}\;\mathrm{to}\;5 }\\ \displaystyle { \delta _{ij}\sum _{\beta =1}^{N^{(i)}} n {\dot{\gamma }}^0_{tw} \bigg < \frac{\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\beta }}{{\tau _0^{(i)}}} \bigg >^{n-1} (\mathbb {C}^\mathrm{e}:\varvec{\varepsilon }^*:\hat{{\mathbf {P}}}^{\beta }) (-1)( \tau _0^{(i)})^{-2} \Delta t, \;\; \mathrm{for} \; \mathrm{i=6}\;\mathrm{and}\;7} \end{array} \right. \end{aligned} \end{aligned}$$
(A.30)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kweon, S., Raja, D.S. A study on the mechanical response of magnesium using an anisotropic elasticity twinning CP FEM. Arch Appl Mech 91, 4239–4261 (2021). https://doi.org/10.1007/s00419-021-02006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02006-z

Keywords

Navigation