Skip to main content
Log in

A hyperelastic constitutive model for rubber-like materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this contribution, a new form of the strain energy function is proposed to describe the hyperelastic behavior of rubber-like materials under various deformation. The proposed function represents an invariant-based model and contains two material parameters. The model was tested with the experimental data of vulcanized rubbers, collagen and fibrin. The material parameters are kept constant for a material subjected to different types of loading. Good agreement between model and experimental data was obtained for all materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arruda, E., Boyce, M.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389 (1993). https://doi.org/10.1016/0022-5096(93)90013-6

    Article  MATH  Google Scholar 

  2. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73(3), 504–523 (2000)

    Article  Google Scholar 

  3. Carroll, M.: A strain energy function for vulcanized rubbers. J. Elast. 103(2), 173–187 (2011)

    Article  MathSciNet  Google Scholar 

  4. Darijani, H., Naghdabadi, R.: Hyperelastic materials behavior modeling using consistent strain energy density functions. Acta Mech. 213(3–4), 235–254 (2010)

    Article  Google Scholar 

  5. Dobrynin, A.V., Carrillo, J.M.Y.: Universality in nonlinear elasticity of biological and polymeric networks and gels. Macromolecules 44(1), 140–146 (2010)

    Article  Google Scholar 

  6. Flory, P., Rehner, J.: Statistical mechanics of cross-linked polymer networks i. rubberlike elasticity. J. Chem. Phys. 11, 512 (1943). https://doi.org/10.1063/1.1723791

    Article  Google Scholar 

  7. Fung, Y.: Elasticity of soft tissues in simple elongation. Am. J. Physiol. Leg. Content 213(6), 1532–1544 (1967)

    Article  Google Scholar 

  8. Gent, A.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59 (1996)

    Article  Google Scholar 

  9. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Hoboken (2005)

    Google Scholar 

  10. Isihara, A., Hashitsume, N., Tatibana, M.: Statistical theory of rubber-like elasticity. iv.(two-dimensional stretching). J. Chem. Phys. 19(12), 1508–1512 (1951)

    Article  MathSciNet  Google Scholar 

  11. James, H., Guth, E.: Theory of the elastic properties of rubbers. J. Chem. Phys. 11, 455 (1943)

    Article  Google Scholar 

  12. Mansouri, M., Darijani, H.: Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. Int. J. Solids Struct. 51(25–26), 4316–4326 (2014)

    Article  Google Scholar 

  13. Miehe, C., Göktepe, S., Lulei, F.: A micro–macro approach to rubber-like materials—part i: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617 (2004). https://doi.org/10.1016/j.jmps.2004.03.011

    Article  MathSciNet  MATH  Google Scholar 

  14. Ogden, R.: Non-Linear Elastic Deformations. Dover Publications, New York (1997)

    Google Scholar 

  15. Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 326(1567), 565–584 (1972)

    MATH  Google Scholar 

  16. Sasso, M., Palmieri, G., Chiappini, G., Amodio, D.: Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym. Test. 27(8), 995–1004 (2008)

    Article  Google Scholar 

  17. Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for treloar’s data. Arch. Appl. Mech. 82(9), 1183–1217 (2012)

    Article  Google Scholar 

  18. Storm, C., Pastore, J.J., MacKintosh, F.C., Lubensky, T.C., Janmey, P.A.: Nonlinear elasticity in biological gels. Nature 435(7039), 191 (2005)

    Article  Google Scholar 

  19. Treloar, L.: Stress-strain data for vulcanized rubber under various types of deformation. Rubber Chem. Technol. 17(4), 813–825 (1944)

    Article  Google Scholar 

  20. Yeoh, O.H.: Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 63(5), 792–805 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

Author thanks the anonymous reviewers for their constructive and fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Doğan Külcü.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Külcü, İ.D. A hyperelastic constitutive model for rubber-like materials. Arch Appl Mech 90, 615–622 (2020). https://doi.org/10.1007/s00419-019-01629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01629-7

Keywords

Navigation