Skip to main content
Log in

A high-precision progressive damage model based on generalized mixed finite element method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A novel three-dimensional progressive damage model based on generalized mixed finite element method (GMPDM) was established to investigate the strength and failure behavior of notched composite laminate plate. Firstly, the stress distribution of notched isotropic plate under tension is studied, and the results are compared with the analytical solution to verify the high accuracy of the generalized mixed finite element method. Then, the strength and failure modes of three notched composite laminates are studied. The results are compared with the several groups of results to verify the high-precision of the developed GMPDM method, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kozlov, M.V., Sheshenin, S.V.: Modeling the progressive failure of laminated composites. Mech. Compos. Mater. 51(6), 695–706 (2016)

    Article  Google Scholar 

  2. Tay, T.E., Liu, G., Tan, V.B.C., et al.: Progressive failure analysis of composites. J. Compos. Mater. 42(18), 1921–1966 (2008)

    Article  Google Scholar 

  3. Liu, G., Tang, K.: Study on stress concentration in notched cross-ply laminates under tensile loading. J. Compos. Mater. 50(3), 283–296 (2016)

    Article  Google Scholar 

  4. Ridha, M., Wang, C.H., Chen, B.Y., et al.: Modelling complex progressive failure in notched composite laminates with varying sizes and stacking sequences. Compos. A Appl. Sci. Manuf. 58, 16–23 (2014)

    Article  Google Scholar 

  5. Pineda, E.J., Waas, A.M., Bednarcyk, B.A., et al.: Progressive damage and failure modeling in notched laminated fiber reinforced composites. Int. J. Fract. 158(2), 125–143 (2009)

    Article  Google Scholar 

  6. Tan, S.C., Perez, J.: Progressive failure of laminated composites with a hole under compressive loading. J. Reinf. Plast. Compos. 12(10), 1043–1057 (1993)

    Article  Google Scholar 

  7. Zhang, J., Qi, D., Zhou, L., et al.: A progressive failure analysis model for composite structures in hygrothermal environments. Compos. Struct. 133, 331–342 (2015)

    Article  Google Scholar 

  8. Tay, T.E., Liu, G., Tan, V.B.C.: Damage progression in open-hole tension laminates by the SIFT–EFM approach. J. Compos. Mater. 40(11), 971–992 (2006)

    Article  Google Scholar 

  9. Eriksson, I., Aronsson, C.G.: Strength of tensile loaded graphite/epoxy laminates containing cracks, open and filled holes. J. Compos. Mater. 24(5), 456–482 (1990)

    Article  Google Scholar 

  10. Kilic, H., Haj-Ali, R.: Progressive damage and nonlinear analysis of pultruded composite structures. Compos. B Eng. 34(3), 235–250 (2003)

    Article  Google Scholar 

  11. Mines, R.A.W., Alias, A.: Numerical simulation of the progressive collapse of polymer composite sandwich beams under static loading. Compos. A Appl. Sci. Manuf. 33(1), 11–26 (2002)

    Article  Google Scholar 

  12. Padhi, G.S., Shenoi, R.A., Moy, S.S.J., et al.: Progressive failure and ultimate collapse of laminated composite plates in bending. Compos. Struct. 40(3–4), 277–291 (1997)

    Article  Google Scholar 

  13. Chen, J.F., Morozov, E.V., Shankar, K.: Simulating progressive failure of composite laminates including in-ply and delamination damage effects. Compos. A Appl. Sci. Manuf. 61, 185–200 (2014)

    Article  Google Scholar 

  14. Qing G, Mao J, Liu Y. Generalized mixed finite element method for 3D elasticity problems[J]. Acta Mech. Sin. 34(2), 371–380 (2018)

    Article  MathSciNet  Google Scholar 

  15. Van Hoa, S., Feng, W.: Hybrid Finite Element Method for Stress Analysis of Laminated Composites. Springer, Berlin (2013)

    MATH  Google Scholar 

  16. Timoskenko, S.P., Goodier, J.N.: Theory of Elasticity, 2nd edn, p. 78. McGraw-Hill, New York (1951)

    Google Scholar 

  17. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)

    Article  Google Scholar 

  18. Dano, M.L., Gendron, G., Picard, A.: Stress and failure analysis of mechanically fastened joints in composite laminates. Compos. Struct. 50(3), 287–296 (2000)

    Article  Google Scholar 

  19. Bakhshan, H., Afrouzian, A., Ahmadi, H., et al.: Progressive failure analysis of fiber-reinforced laminated composites containing a hole. Int. J. Damage Mech. 27(7), 963–978 (2018)

    Article  Google Scholar 

  20. İnal, O., Balıkoğlu, F., Ataş, A.: Bolted joints in quasi-unidirectional glass-fiber NCF composite laminates. Compos. Struct. 183, 536–544 (2018)

    Article  Google Scholar 

  21. Tserpes, K.I., Labeas, G., Papanikos, P., et al.: Strength prediction of bolted joints in graphite/epoxy composite laminates. Compos. B Eng. 33(7), 521–529 (2002)

    Article  Google Scholar 

  22. Koh, R., Madsen, B.: Strength failure criteria analysis for a flax fiber reinforced composite. Mech. Mater. 124, 26–32 (2018)

    Article  Google Scholar 

  23. Camanho, P.P., Matthews, F.L.: A progressive damage model for mechanically fastened joints in composite laminates. J. Compos. Mater. 33(24), 2248–2280 (1999)

    Article  Google Scholar 

  24. de Miguel, A.G., Kaleel, I., Nagaraj, M.H., et al.: Accurate evaluation of failure indices of composite layered structures via various FE models. Compos. Sci. Technol. 167, 174–189 (2018)

    Article  Google Scholar 

  25. Wang, B., Fang, G., Liu, S., et al.: Progressive damage analysis of 3D braided composites using FFT-based method. Compos. Struct. 192, 255–263 (2018)

    Article  Google Scholar 

  26. Mandal, B., Chakrabarti, A.: Numerical failure assessment of multi-bolt FRP composite joints with varying sizes and preloads of bolts. Compos. Struct. 187, 169–178 (2018)

    Article  Google Scholar 

  27. Olmedo, Á., Santiuste, C.: On the prediction of bolted single-lap composite joints. Compos. Struct. 94(6), 2110–2117 (2012)

    Article  Google Scholar 

  28. Tserpes, K.I., Papanikos, P., Labeas, G., et al.: Fatigue damage accumulation and residual strength assessment of CFRP laminates. Compos. Struct. 63(2), 219–230 (2004)

    Article  Google Scholar 

  29. Labeas, G.N., Belesis, S.D., Diamantakos, I., et al.: Adaptative progressive damage modeling for large-scale composite structures. Int. J. Damage Mech. 21(3), 441–462 (2012)

    Article  Google Scholar 

  30. Liu, W., He, Z., Yu, F., et al.: A progressive damage model introducing temperature field for bolted composite joint with preload. Modell. Simul. Mater. Sci. Eng. 27(6), 065011 (2019)

    Article  Google Scholar 

  31. Makris, A., Ramault, C., Van Hemelrijck, D., et al.: An investigation of the mechanical behavior of carbon epoxy cross ply cruciform specimens under biaxial loading. Polym. Compos. 31(9), 1554–1561 (2010)

    Article  Google Scholar 

  32. Bathe, K.J., Ramm, E., Wilson, E.L.: Finite element formulations for large deformation dynamic analysis. Int. J. Numer. Methods Eng. 9(2), 353–386 (1975)

    Article  Google Scholar 

  33. Bao H C, Liu G Y. Simulation on damage in quasi-isotropic fiber-reinforced composite laminates under open-hole tension [J]. Acta Mater. Compos. Sin. 33(5), 1026–1032 (2016)

  34. Lessard, L.B., Chang, F.K.: Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: part II—experiment. J. Compos. Mater. 25(1), 44–64 (1991)

    Article  Google Scholar 

  35. Chang, F.K., Lessard, L.B.: Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: part I—analysis. J. Compos. Mater. 25(1), 2–43 (1991)

    Article  Google Scholar 

  36. Cui, H.B., Wen, W.D., Cui, H.T.: Three-dimensional progressive damage of laminated composites with a hole under compressive loading. Chin J. Mech. Eng. 42(8), 89–94 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenpeng He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

In the process of solving material nonlinearity, the total stress \(\sigma ^{n}\) should be expressed in terms of the sum of the previous stresses \(\sigma ^{n-1}\) and the incremental stresses \(\Delta \sigma \).

$$\begin{aligned} \sigma ^{n}=\sigma ^{n-1}+\Delta \sigma \end{aligned}$$
(16)

Equivalent expression of Eq. (4) without considering the body force is as follows:

$$\begin{aligned} \Pi _G^n = \int _V { - \frac{1}{4}{\sigma ^T}{S^{n - 1}}\sigma + \frac{1}{2}{\sigma ^T}\varepsilon + \frac{1}{4}{\varepsilon ^T}{C^{n - 1}}\varepsilon \hbox {d}V} - \int _S {{{\bar{T}}^T}u\hbox {d}S} \end{aligned}$$
(17)

Substituting Eq. (16) into Eq. (17), we can obtain

$$\begin{aligned} \mathrm{{\Pi }}_G^n= & {} \int _V { - \frac{1}{4}{{\left( {{\sigma ^{n - 1}} + \Delta \sigma } \right) }^T}{S^{n - 1}}\left( {{\sigma ^{n - 1}} + \Delta \sigma } \right) } \nonumber \\&+ \frac{1}{2}{\left( {{\sigma ^{n - 1}} + \Delta \sigma } \right) ^T}\varepsilon + \frac{1}{4}{\varepsilon ^T}{C^{n - 1}}\varepsilon \hbox {d}V\nonumber \\&- \int _S {{{\bar{T}}^T}\Delta u\hbox {d}S} \end{aligned}$$
(18)

The simplified Eq. (18) is as follows:

$$\begin{aligned} \prod \nolimits _{G}^n= & {} \int _V {\Delta {\sigma ^T}{S^{n - 1}}\Delta \sigma + 2{{\left( {\Delta \sigma } \right) }^T}\varepsilon - {\varepsilon ^T}{C^{n - 1}}\varepsilon \hbox {d}V} + 4\int _S {{{\bar{T}}^T}\Delta u\hbox {d}S} \nonumber \\&+ \,\int _V {{{\left( {{\sigma ^{n - 1}}} \right) }^T}{S^{n - 1}}\left( {{\sigma ^{n - 1}}} \right) + {{\left( {{\sigma ^{n - 1}}} \right) }^T}{S^{n - 1}}\Delta \sigma } \,\nonumber \\&+ \,\Delta {\sigma ^T}{S^{n - 1}}{\sigma ^{n - 1}} - 2{\left( {{\sigma ^{n - 1}}} \right) ^T}\varepsilon \hbox {d}V \end{aligned}$$
(19)

We need to discretize the displacement field and stress field to get the displacement and stress of the node. Taking an example for 3D 8-nodes linear element, the discrete form is as follows:

$$\begin{aligned} \left\{ {{\begin{array}{l} {\Delta u=N_q \Delta q}\\ {\Delta \sigma =N_p \Delta P} \\ {\varepsilon =\nabla N_q \Delta q} \\ \end{array} }} \right. \end{aligned}$$
(20)

where \(\Delta u\) and \(\Delta \sigma \) represent the incremental displacement field and incremental stress field of total elasticity, respectively. \(N_p =\left[ {{\begin{array}{ll} {N_q }&{} \\ &{} {N_q } \\ \end{array} }} \right] \), \(\hbox {Diag}\left( {N_q } \right) =\left[ {{\begin{array}{lll} {N_e }&{} {N_e }&{} {N_e } \\ \end{array} }} \right] \) and \(N_e =\left[ {N_1 ,N_2 \ldots N_8 } \right] \)

Substituting Eq. (20) into Eq. (19), we can obtain:

$$\begin{aligned} \prod \nolimits _\mathrm{G}^n= & {} \sum _{i=1}^j {\left[ \int _v {\Delta P^{T}\left( {N_p^T S^{n-1}N_p } \right) ^{i}\Delta P+2\Delta P^{T}\left( {N_p^T \nabla N_q } \right) ^{i}\Delta q}\right. } \nonumber \\&-\Delta q^{T}\left( {\nabla N_q^T C^{n-1}\nabla N_q } \right) ^{i}\Delta q\hbox {d}V \nonumber \\&+\,4\int _s {\left( {{\overline{T}} ^{T}N_q } \right) ^{i}\Delta q\hbox {d}S} \nonumber \\&+\,\int _V {\left( {\left( {\sigma ^{n-1}} \right) ^{T}S^{n-1}\left( {\sigma ^{n-1}} \right) } \right) } ^{i}+\left( {\left( {\sigma ^{n-1}} \right) ^{T}S^{n-1}N_P } \right) ^{i}\Delta P \nonumber \\&+\,\Delta P^{T}\left( {N_p^T S^{n-1}\sigma ^{n-1}} \right) ^{i}-2\left( {\left( {\sigma ^{n-1}} \right) ^{T}\nabla N_q } \right) ^{i}\Delta q\hbox {d}V \end{aligned}$$
(21)

where j indicates the number of total elements.

Consider \(\Delta p\) and \(\Delta q\) as two independent variables. By \(\delta \prod _\mathrm{G} =0\), two Euler–Lagrange equations can be obtained:

$$\begin{aligned} \left\{ {{\begin{array}{l} {\sum \limits _{i=1}^j {\left\{ {\int _V {\left( {N_p^T S^{n-1}N_P } \right) ^{i}\Delta P+\left( {N_p^T \nabla N_q } \right) ^{i}\Delta q\hbox {d}V} +\frac{1}{2}\int _V {\left[ {\left( {\sigma ^{n-1}} \right) ^{T}S^{n-1}N_P +N_P^T S^{n-1}\sigma ^{n-1}} \right] ^{i}\hbox {d}V} } \right\} =0} } \\ {\sum \limits _{i=1}^j {\left\{ {\int _V {\left( {N_P^T \nabla N_q } \right) ^{i}\Delta P-\left[ {\left( {\nabla N_q } \right) ^{T}C^{n-1}\nabla N_q } \right] ^{i}\Delta q\hbox {d}V+2\int _S {\left( {{\overline{T}} ^{T}N_q } \right) ^{i}\hbox {d}S-\int _V {\left[ {\left( {\sigma ^{n-1}} \right) ^{T}\nabla N_q } \right] ^{i}\hbox {d}V} } } } \right\} =0} } \\ \end{array} }} \right. \end{aligned}$$
(22)

In what follows, the superscript “i” will be dropped for clarity.

$$\begin{aligned} K_{11}^{n - 1}= & {} \int _V {N_P^T{S^{n - 1}}{N_p}\hbox {d}V} \nonumber \\ K_{12}^{n - 1}= & {} \int _V {N_P^T\nabla {N_q}\hbox {d}V} \nonumber \\ K_{21}^{n - 1}= & {} \int _V {N_P^T\nabla {N_q}\hbox {d}V} \nonumber \\ K_{22}^{n - 1}= & {} - \int _V {{{\left( {\nabla {N_q}} \right) }^T}{C^{n - 1}}\left( {\nabla {N_q}} \right) \hbox {d}V} \nonumber \\ F_1^n= & {} - \frac{1}{2}\int _V {{{\left( {{\sigma ^{n - 1}}} \right) }^T}{S^{n - 1}}{N_P} + N_P^T{S^{n - 1}}{\sigma ^{n - 1}}\hbox {d}V} \nonumber \\ F_\mathrm{{2}}^n= & {} - 2\int _S {{{\bar{T}}^T}{N_q}\hbox {d}S} + \int _V {{{\left( {{\sigma ^{n - 1}}} \right) }^T}\nabla {N_q}\hbox {d}V} \end{aligned}$$
(23)

The matrix simplified expressions of the two Euler–Lagrange equations are as follows:

$$\begin{aligned} \left[ {{\begin{array}{cc} {K_{\mathrm {11}}^{n-1} }&{}\quad {K_{12}^{n-1} } \\ {K_{21}^{n-1} }&{} \quad {K_{22}^{n-1} } \\ \end{array} }} \right] \left\{ {{\begin{array}{c} {\Delta P} \\ {\Delta q} \\ \end{array} }} \right\} =\left\{ {{\begin{array}{c} {F_1^n }\\ {F_2^n } \\ \end{array} }} \right\} \end{aligned}$$
(24)

The iteration in each increment has to be repeated until the following condition is satisfied:

$$\begin{aligned} \left\{ {{\begin{array}{l} {\frac{\left| {\Delta P^{n-1}} \right| }{\left| {\Delta P^{n}} \right| }\le \hbox {Tolerance 1}}\\ {\frac{\left| {\Delta q^{n-1}} \right| }{\left| {\Delta q^{n}} \right| }\le \hbox {Tolerance 2}} \\ \end{array} }} \right. \end{aligned}$$
(25)

Once stress condition of an element satisfies the proposed failure criteria, material property C is discounted according to the proposed stiffness degradation model shown in Table 1. This degradation in property will affect the distribution of stress in the damaged area. The redistributed stresses in the elasticity after damage can be calculated by performing the Newton–Raphson iteration again with updated material properties. The procedure will be repeated until no additional damage is predicted at the given load level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yu, F., He, Z. et al. A high-precision progressive damage model based on generalized mixed finite element method. Arch Appl Mech 90, 559–571 (2020). https://doi.org/10.1007/s00419-019-01625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01625-x

Keywords

Navigation