Skip to main content
Log in

Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, free vibration of a metal foam core sandwich (MFCS) beam embedded in Winkler–Pasternak elastic foundation is studied using the Chebyshev collocation method (CCM). This method can achieve high precision within the range allowed by the effective number of bits of computers. Three foam distribution types along the thickness direction are considered for the core. The Timoshenko beam theory is adopted and Hamilton’s principle is utilized to derive the boundary conditions and governing equations of the model. The numerical results show that natural frequencies of the sandwich beam initially increase and then decrease with the rise in thickness of metal foam core. By arranging the foam distribution in the core, natural frequencies of the sandwich beam can be significantly changed. Moreover, natural frequencies of the uniform foam distribution beam are insensitive to the foam coefficient. For the beam with non-uniform foam distribution, however, the natural frequencies increase or decrease with the foam coefficient, depending closely on the foam type. In addition, the present method is validated by comparing with the published ones for special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W., Arwade, S.R.: Steel foam for structures: a review of applications, manufacturing and material properties. J. Constr. Steel Res. 71, 1–10 (2012)

    Article  Google Scholar 

  2. Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108–109, 14–22 (2016)

    Article  Google Scholar 

  3. Jabbari, M., Mojahedin, A., Khorshidvand, A.R., Eslami, M.R.: Buckling analysis of a functionally graded thin circular plate made of saturated porous materials. J. Eng. Mech. 140, 287–295 (2014)

    Article  Google Scholar 

  4. Rezaei, A.S., Saidi, A.R.: Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous–cellular plates. Compos. Part B Eng. 91, 361–370 (2016)

    Article  Google Scholar 

  5. Wang, Y.Q., Liang, C., Zu, J.W.: Examining wave propagation characteristics in metal foam beams: Euler–Bernoulli and Timoshenko models. J. Braz. Soc. Mech. Sci. Eng. 40, 565 (2018)

    Article  Google Scholar 

  6. Jasion, P., Magnucka-Blandzi, E., Szyc, W., Magnucki, K.: Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core. Thin Walled Struct. 61, 154–161 (2012)

    Article  Google Scholar 

  7. Zheng, Z., Wang, C., Yu, J., Reid, S.R., Harrigan, J.J.: Dynamic stress–strain states for metal foams using a 3D cellular model. J. Mech. Phys. Solids 72, 93–114 (2014)

    Article  Google Scholar 

  8. Liu, J., He, S., Zhao, H., Li, G., Wang, M.: Experimental investigation on the dynamic behaviour of metal foam: from yield to densification. Int. J. Impact Eng. 114, 69–77 (2018)

    Article  Google Scholar 

  9. Wang, Y.Q., Ye, C., Zu, J.W.: Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp. Sci. Technol. 85, 359–370 (2019)

    Article  Google Scholar 

  10. Liu, N., Jeffers, A.E.: Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory. Compos. Struct. 176, 143–153 (2017)

    Article  Google Scholar 

  11. Liu, N., Jeffers, A.E.: Adaptive isogeometric analysis in structural frames using a layer-based discretization to model spread of plasticity. Comput. Struct. 196, 1–11 (2018)

    Article  Google Scholar 

  12. Liu, N., Jeffers, A.E.: A geometrically exact isogeometric Kirchhoff plate: feature-preserving automatic meshing and \(C^{1}\) rational triangular Bézier spline discretizations. Int. J. Numer. Methods Eng. 115, 395–409 (2018)

    Article  Google Scholar 

  13. Hao, Y.X., Chen, L.H., Zhang, W., Lei, J.G.: Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. J. Sound Vib. 312, 862–892 (2008)

    Article  Google Scholar 

  14. Zhang, W., Yang, J., Hao, Y.: Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dyn. 59, 619–660 (2010)

    Article  MATH  Google Scholar 

  15. Hao, Y.X., Zhang, W., Yang, J.: Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method. Compos. Part B Eng. 42, 402–413 (2011)

    Article  Google Scholar 

  16. Zhang, W., Hao, Y.X., Yang, J.: Nonlinear dynamics of FGM circular cylindrical shell with clamped–clamped edges. Compos. Struct. 94, 1075–1086 (2012)

    Article  Google Scholar 

  17. Mao, J.J., Zhang, W.: Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation. Compos. Struct. 203, 551–565 (2018)

    Article  Google Scholar 

  18. Zhang, W., Hao, Y., Guo, X., Chen, L.: Complicated nonlinear responses of a simply supported FGM rectangular plate under combined parametric and external excitations. Meccanica 47, 985–1014 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, X.Y., Zhang, W.: Nonlinear vibrations of a reinforced composite plate with carbon nanotubes. Compos. Struct. 135, 96–108 (2016)

    Article  Google Scholar 

  20. Wang, Y.Q., Huang, X.B., Li, J.: Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process. Int. J. Mech. Sci. 110, 201–216 (2016)

    Article  Google Scholar 

  21. Ding, H., Chen, L.Q.: Galerkin methods for natural frequencies of high-speed axially moving beams. J. Sound Vib. 329, 3484–3494 (2010)

    Article  Google Scholar 

  22. Wang, Y.Q., Zu, J.W.: Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid. Compos. Struct. 164, 130–144 (2017)

    Article  Google Scholar 

  23. Qin, Z., Pang, X., Safaei, B., Chu, F.: Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos. Struct. 220, 847–860 (2019)

    Article  Google Scholar 

  24. Wang, Y.Q., Zu, J.W.: Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp. Sci. Technol. 69, 550–562 (2017)

    Article  Google Scholar 

  25. Li, C., Miao, B., Tang, Q., Xi, C., Wen, B.: Nonlinear vibrations analysis of rotating drum-disk coupling structure. J. Sound Vib. 420, 35–60 (2018)

    Article  Google Scholar 

  26. Wang, Y.Q.: Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronaut. 143, 263–271 (2018)

    Article  Google Scholar 

  27. Yang, X.D., Zhang, W., Chen, L.Q.: Transverse vibrations and stability of axially traveling sandwich beam with soft core. J. Vib. Acoust. 135, 051013 (2013)

    Article  Google Scholar 

  28. Zhang, W., Chen, J.E., Cao, D.X., Chen, L.H.: Nonlinear dynamic responses of a truss core sandwich plate. Compos. Struct. 108, 367–386 (2014)

    Article  Google Scholar 

  29. Hao, W.L., Zhang, W., Yao, M.H.: Multipulse chaotic dynamics of six-dimensional nonautonomous nonlinear system for a honeycomb sandwich plate. Int. J. Bifurc. Chaos 24, 1450138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, X., Yu, K., Zhao, R.: Thermal post-buckling and vibration analysis of a symmetric sandwich beam with clamped and simply supported boundary conditions. Arch. Appl. Mech. 88, 543–561 (2018)

    Article  Google Scholar 

  31. Ashby, M.F., Evans, T., Fleck, N.A., Hutchinson, J.W., Wadley, H.N.G., Gibson, L.J.: Metal Foams: A Design Guide. Elsevier, Amsterdam (2000)

    Google Scholar 

  32. Gibson, L.J.: Mechanical behavior of metallic foams. Annu. Rev. Mater. Sci. 30, 191–227 (2000)

    Article  Google Scholar 

  33. Chen, D., Kitipornchai, S., Yang, J.: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin Walled Struct. 107, 39–48 (2016)

    Article  Google Scholar 

  34. Zhang, J., Qin, Q., Xiang, C., Wang, T.J.: Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact. Compos. Struct. 153, 614–623 (2016)

    Article  Google Scholar 

  35. Jing, L., Wang, Z., Ning, J., Zhao, L.: The dynamic response of sandwich beams with open-cell metal foam cores. Compos. Part B Eng. 42, 1–10 (2011)

    Article  Google Scholar 

  36. Strek, T., Michalski, J., Jopek, H.: Computational analysis of the mechanical impedance of the sandwich beam with auxetic metal foam core. Phys. Status Solidi 256, 1800423 (2019)

    Article  Google Scholar 

  37. Grygorowicz, M., Magnucki, K., Malinowski, M.: Elastic buckling of a sandwich beam with variable mechanical properties of the core. Thin Walled Struct. 87, 127–132 (2015)

    Article  Google Scholar 

  38. Yaseer, M., Xiang, C., Gupta, N., Strbik, O.M., Cho, K.: Syntactic foam core metal matrix sandwich composite under bending conditions. Mater. Des. 86, 536–544 (2015)

    Article  Google Scholar 

  39. Smyczynski, M.J., Magnucka-blandzi, E.: Thin-walled structures static and dynamic stability of an axially compressed five-layer sandwich beam. Thin Walled Struct. 90, 23–30 (2015)

    Article  Google Scholar 

  40. Caliskan, U., Apalak, M.K.: Low velocity bending impact behavior of foam core sandwich beams: experimental. Compos. Part B 112, 158–175 (2017)

    Article  Google Scholar 

  41. Winkler, E.: Die Lehre von Elastizitat und Festigkeit. H. Domen, Prague (1867)

    Google Scholar 

  42. Akgöz, B., Civalek, Ö.: Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity. Compos. Struct. 134, 294–301 (2015)

    Article  Google Scholar 

  43. Mohammadi, K., Mahinzare, M., Rajabpour, A., Ghadiri, M.: Comparison of modeling a conical nanotube resting on the Winkler elastic foundation based on the modified couple stress theory and molecular dynamics simulation. Eur. Phys. J. Plus 132, 115 (2017)

    Article  Google Scholar 

  44. Sofiyev, A.H.: Large amplitude vibration of FGM orthotropic cylindrical shells interacting with the nonlinear Winkler elastic foundation. Compos. Part B Eng. 98, 141–150 (2016)

    Article  Google Scholar 

  45. Engin Emsen, K.M., Bekir Akgöz, Ö.C.: Modal analysis of tapered beam- column embedded in Winkler elastic. Int. J. Eng. Appl. Sci. 7, 25–35 (2015)

    Google Scholar 

  46. Beskou, N.D., Muho, E.V.: Dynamic response of a finite beam resting on a Winkler foundation to a load moving on its surface with variable speed. Soil Dyn. Earthq. Eng. 109, 222–226 (2018)

    Article  Google Scholar 

  47. Elishakoff, I., Tonzani, G.M., Marzani, A.: Effect of boundary conditions in three alternative models of Timoshenko–Ehrenfest beams on Winkler elastic foundation. Acta Mech. 229, 1649–1686 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Filonenko-Borodich, M.M.: Some approximate theories of elastic foundation. Uchenyie Zap. Moskovkogo Gos. Univ. Mekhanika, Moscow 46, 3–18 (1940)

    Google Scholar 

  49. Vlasov, V.Z.: Beams, plates and shells on elastic foundation. Isr. Progr. Sci. (Trans.) (1966)

  50. Hetényi, M.: A general solution for the bending of beams on an elastic foundation of arbitrary continuity. J. Appl. Phys. 21, 55–58 (1950)

    Article  MATH  Google Scholar 

  51. Pasternak, P.L.: On a new method of an elastic foundation by means of two foundation constants. Gos. Izd. Lit. po Stroit. I Arkhitekture, Moscow, USSR 1, 1–56 (1954)

    Google Scholar 

  52. Zhang, D.P., Lei, Y.J., Adhikari, S.: Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory. Acta Mech. 229, 2379–2392 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, H., Ma, J., Ding, H., Chen, L.: Vibration of axially moving beam supported by viscoelastic foundation. Appl. Math. Mech. 38, 161–172 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sofiyev, A.H., Kuruoglu, N.: Natural frequency of laminated orthotropic shells with different boundary conditions and resting on the Pasternak type elastic foundation. Compos. Part B Eng. 42, 1562–1570 (2011)

    Article  Google Scholar 

  55. Şimşek, M., Reddy, J.N.: A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Compos. Struct. 101, 47–58 (2013)

    Article  Google Scholar 

  56. Kim, Y.W.: Free vibration analysis of FGM cylindrical shell partially resting on Pasternak elastic foundation with an oblique edge. Compos. Part B Eng. 70, 263–276 (2015)

    Article  Google Scholar 

  57. Mechab, B., Mechab, I., Benaissa, S., Ameri, M., Serier, B.: Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler–Pasternak elastic foundations. Appl. Math. Model. 40, 738–749 (2016)

    Article  MathSciNet  Google Scholar 

  58. Akgöz, B., Civalek, Ö.: A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Compos. Struct. 176, 1028–1038 (2017)

    Article  Google Scholar 

  59. Froio, D., Rizzi, E., Simões, F.M.F., Costa, A.P.Da: Universal analytical solution of the steady-state response of an infinite beam on a Pasternak elastic foundation under moving load. Int. J. Solids Struct. 132–133, 245–263 (2018)

    Article  Google Scholar 

  60. Coşkun, İ.: The response of a finite beam on a tensionless Pasternak foundation subjected to a harmonic load. Eur. J. Mech. A/Solids 22, 151–161 (2003)

    Article  MATH  Google Scholar 

  61. Szekrényes, A.: Improved analysis of unidirectional composite delamination specimens. Mech. Mater. 39, 953–974 (2007)

    Article  Google Scholar 

  62. Schillinger, D., Evans, J.A., Reali, A., Scott, M.A., Hughes, T.J.R.: Isogeometric collocation: cost comparison with galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput. Methods Appl. Mech. Eng. 267, 170–232 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Khaneh Masjedi, P., Ovesy, H.R.: Chebyshev collocation method for static intrinsic equations of geometrically exact beams. Int. J. Solids Struct. 54, 183–191 (2015)

    Article  MATH  Google Scholar 

  64. Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev–Ritz method. Compos. Struct. 193, 281–294 (2018)

    Article  Google Scholar 

  65. Magnucki, K., Stasiewicz, P.: Elastic buckling of a porous beam. J. Theor. Appl. Mech. 42, 859–868 (2004)

    MATH  Google Scholar 

  66. Magnucka-Blandzi, E.: Axi-symmetrical deflection and buckling of circular porous–cellular plate. Thin Walled Struct. 46, 333–337 (2008)

    Article  Google Scholar 

  67. Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 382, 43–59 (1982)

    Article  Google Scholar 

  68. Choi, J.B., Lakes, R.S.: Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. Int. J. Mech. Sci. 37, 51–59 (1995)

    Article  MATH  Google Scholar 

  69. Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids. 59, 2382–2399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  70. Donnell, L.H.: Beams, Plates and Shells. McGraw-Hill Companies, New York (1976)

    MATH  Google Scholar 

  71. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  72. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  73. Wattanasakulpong, N., Chaikittiratana, A.: Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 50, 1331–1342 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  74. Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 11672071) and the Fundamental Research Funds for the Central Universities (Grant No. N170504023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qing Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.Q., Zhao, H.L. Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method. Arch Appl Mech 89, 2335–2349 (2019). https://doi.org/10.1007/s00419-019-01579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01579-0

Keywords

Navigation