Skip to main content
Log in

Power transmission and suppression characteristics of stiffened Mindlin plate under different boundary constraints

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The dynamic power transmission characteristics of a finite stiffened Mindlin plate subject to different boundary conditions are analytically studied. The stiffened plate is modeled as a coupled structure comprising a plate and stiffeners. Dynamic responses calculated by the analytical solutions are verified through comparison of the results with those generated using the finite element method. The computed results show that Mindlin plate and Timoshenko beam theory is more suitable for studying dynamic power of the stiffened plate over a broad frequency range than classical plate and beam theory. The stiffness and inertia characteristics of the Mindlin plate can be enhanced using the stiffeners, which can significantly affect the dynamic response, especially in low-frequency range. It can be also noticed that the stop band in the low-frequency range can become wider by increasing the number and dimension (height and width) of the stiffeners, so vibratory power of the stiffened Mindlin plate in the low-frequency range can be greatly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cuschieri, J.M.: Structural power-flow analysis using a mobility approach of an L-shaped plate. J. Acoust. Soc. Am. 87(3), 1159–1165 (1990)

    Article  Google Scholar 

  2. Niu, B., Olhoff, N.: Minimization of vibration power transmission from rotating machinery to a flexible supporting plate. Int. J. Struct. Stab. Dyn. 14, 1350068 (2014)

    Article  Google Scholar 

  3. Bahrami, A., Teimourian, A.: Small scale effect on vibration and wave power reflection in circular annular nanoplates. Compos. Part B 109, 214–226 (2017)

    Article  MATH  Google Scholar 

  4. Mohanta, R.K., Chelliah, T.R., Allamsetty, S., Akula, A., Ghosh, R.: Sources of vibration and their treatment in hydro power stations-A review. Eng. Sci. Technol., Int. J. 20, 637–648 (2016)

    Article  Google Scholar 

  5. Heo, Y., Kim, K.: Definitions of non-stationary vibration power for time-frequency analysis and computational algorithms based upon harmonic wavelet transform. J. Sound Vib. 336, 275–292 (2015)

    Article  Google Scholar 

  6. Milovančević, M., Nikolić, V., Andelković, B.: Analyses of the most influential factors for vibration monitoring of planetary power transmissions in pellet mills by adaptive neuro-fuzzy technique. Mech. Syst. Signal Process. 82, 356–375 (2017)

    Article  Google Scholar 

  7. Jin, M., Pan, J.: Vibration transmission from internal structures to the tank of an oil-filled power transformer. Appl. Acoust. 113, 1–6 (2016)

    Article  Google Scholar 

  8. Chevva, K., Sun, F., Blanc, A., Mendoza, J.: Active vibration control using minimum actuation power. J. Sound Vib. 340, 1–21 (2015)

    Article  Google Scholar 

  9. Yang, J., Xiong, Y.P., Xing, J.T.: Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base. Int. J. Mech. Sci. 115–116, 238–252 (2016)

    Article  Google Scholar 

  10. Seo, S.H., Hong, S.Y., Kil, H.G.: Power flow analysis of reinforced beam-plate coupled structures. J. Sound Vib. 259, 1109–1129 (2003)

    Article  Google Scholar 

  11. Cuschieri, J.M., McCollum, M.D.: In-plane and out-of-plane waves’ power transmission through a L-plate junction using the mobility power flow approach. J. Acoust. Soc. Am. 100(2), 857–870 (1996)

    Article  Google Scholar 

  12. Park, Y.H., Hong, S.Y.: Vibrational power flow models for transversely vibrating finite Mindlin plate. J. Sound Vib. 317, 800–840 (2008)

    Article  Google Scholar 

  13. Chen, Y., Jin, G., Du, J., Liu, Z.: Vibration characteristics and power transmission of coupled recta. Chin. J. Mech. Eng. 25, 262–276 (2012)

    Article  Google Scholar 

  14. Liu, C.C., Li, F.M., Fang, B., Zhao, Y., Huang, W.H.: Active control of power flow transmission in finite connected plate. J. Sound Vib. 329, 4124–4135 (2010)

    Article  Google Scholar 

  15. Liu, C.C., Li, F.M., Liang, T.W., Huang, W.H.: The wave and vibratory power transmission in finite L-shaped Mindlin plate with two simply supported opposite edges. Acta Mech. Sin. 27, 785–795 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kessissoglou, N.J.: Active control of the plate energy transmission in a semi-infinite ribbed plate. J. Acoust. Soc. Am. 107, 324–331 (2000)

    Article  Google Scholar 

  17. Lin, T.R.: A study of modal characteristics and the control mechanism of finite periodic and irregular ribbed plates. J. Acoust. Soc. Am. 123(2), 729–737 (2008)

    Article  Google Scholar 

  18. Lin, T.R., Pan, J., Mechefske, C.: The effect of off-neutral axis excitation on the vibration response of finite ribbed plates. J. Vib. Acoust. 131, 011011 (2009)

    Article  Google Scholar 

  19. Mace, B.R.: Power flow between two continuous one-dimension subsystems: a wave solution. J. Sound Vib. 154(2), 289–319 (1992)

    Article  MATH  Google Scholar 

  20. Mace, B.R.: The Statistics of power flow between two continuous one dimension subsystems. J. Sound Vib. 154(2), 321–341 (1992)

    Article  MATH  Google Scholar 

  21. Carcaterra, A., Sestieri, A.: Energy density equations and power flow in structures. J. Sound Vib. 188(2), 269–282 (1995)

    Article  MATH  Google Scholar 

  22. Kessissoglou, N.J., Pan, J.: An analytical investigation of the active attenuation of the plate flexural wave transmission through a reinforcing beam. J. Acoust. Soc. Am. 102, 3530–3541 (1997)

    Article  Google Scholar 

  23. Kessissoglou, N.J.: An analytical and experimental investigation on active control of the flexural wave transmission in a simply supported ribbed plate. J. Sound Vib. 240(1), 73–85 (2001)

    Article  Google Scholar 

  24. Keir, J., Kessissoglou, N.J., Norwood, C.: An analytical investigation of single actuator and error sensor control in connected plates. J. Sound Vib. 271(2), 635–649 (2004)

    Article  Google Scholar 

  25. Keir, J., Kessissoglou, N.J., Norwood, C.J.: Active control of connected plates using single and multiple actuators and error sensors. J. Sound Vib. 281(1), 73–97 (2005)

    Article  Google Scholar 

  26. Vemula, C., Norris, A.N.: Flexural wave propagation and scattering on thin plates using Mindlin theory. Wave Motion 26, 1–12 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, C.D., Wang, C.M.: Computation of the stress resultants of a floating Mindlin plate in response to linear wave forces. J. Fluids Struct. 24, 1042–1057 (2008)

    Article  Google Scholar 

  28. Hu, C., Chen, T., Han, G., Huang, W.H.: Flexural wave propagation and localized vibration in narrow Mindlin’s plate. J. Sound Vib. 306, 389–399 (2007)

    Article  Google Scholar 

  29. Movchan, N.V., Mcphedran, R.C., Movchan, A.B.: Flexural waves in structured elastic plates: Mindlin versus bi-harmonic models. Proc. R. Soc. A: Math., Phys. Eng. Sci. 467, 869–880 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liew, K.M., Xiang, Y., Kinipornchai, S., Meek, J.L.: Formulation of Mindlin–Engesser model for stiffened plate vibration. Comput. Method Appl. Mech. Eng. 120, 339–353 (1995)

    Article  MATH  Google Scholar 

  31. Lin, T.R.: An analytical and experimental study of the vibration response of a clamped ribbed plate. J. Sound Vib. 331, 902–913 (2012)

    Article  Google Scholar 

  32. Pao, Y.H., Mow, C.C.: Diffraction of Elastic Waves and Dynamic Stress Concentrations. Crane, Russak & Company Inc., New York (1973)

    Book  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 11761131006, 11572007, 11402067, 11172084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunchuan Liu or Fengming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The elements of the amplitude coefficient matrix in Eq. (28) are as follows:

where,

$$\begin{aligned}&H_{11}^{(i)} =(\kappa GA_i \sigma _1 \gamma _m k_{ym}^2 -\rho _i A_i \omega ^{2}), \quad H_{12}^{(i)} =(\kappa GA_i \sigma _1 \gamma _m k_{ym}^2 -\rho _i A_i \omega ^{2})e^{\lambda _{2m} (x_i -x_{i-1} )}, \\&H_{13}^{(i)} =(\kappa GA_i \sigma _2 \gamma _m k_{ym}^2 -\rho _i A_i \omega ^{2}), \quad H_{14}^{(i)} =(\kappa GA_i \sigma _2 \gamma _m k_{ym}^2 -\rho _i A_i \omega ^{2})e^{\lambda _{4m} (x_i -x_{i-1} )}, \\&H_{15}^{(i)} =-\kappa GA_i \lambda _{5m} k_{ym} \gamma _m , \quad H_{16}^{(i)} =-\kappa GA_i \lambda _{6m} k_{ym} \gamma _m e^{\lambda _{6m} (x_i -x_{i-1} )}, \\&H_{21}^{(i)} =(\sigma _1 -1)\lambda _{1m} (GJ_i k_{ym}^2 \gamma _m +\rho _i J_i \omega ^{2}), \quad H_{22}^{(i)} =(\sigma _1 -1)\lambda _{2m} (GJ_i k_{ym}^2 \gamma _m +\rho _i J_i \omega ^{2})e^{\lambda _{2m} (x_i -x_{i-1} )}, \\&H_{23}^{(i)} =(\sigma _2 -1)\lambda _{3m} (GJ_i k_{ym}^2 \gamma _m +\rho _i J_i \omega ^{2}), \quad H_{24}^{(i)} =(\sigma _2 -1)\lambda _{4m} (GJ_i k_{ym}^2 \gamma _m +\rho _i J_i \omega ^{2})e^{\lambda _{4m} (x_i -x_{i-1} )}, \\&H_{25}^{(i)} =(GJ_i k_{ym}^3 +\rho _i J_i \omega ^{2}k_{ym} \gamma _m ), \quad H_{26}^{(i)} =(GJ_i k_{ym}^3 +\rho _i J_i \omega ^{2}k_{ym} \gamma _m )e^{\lambda _{6m} (x_i -x_{i-1} )}, \\&H_{31}^{(i)} =[(\sigma _1 -1)(EI_i k_{ym}^3 +\rho _i I_i \omega ^{2}k_{ym} )-\kappa GA_i \sigma _1 k_{ym} ], \\&H_{32}^{(i)} =[(\sigma _1 -1)(EI_i k_{ym}^3 +\rho _i I_i \omega ^{2}k_{ym} )-\kappa GA_i \sigma _1 k_{ym} ]e^{\lambda _{2m} (x_i -x_{i-1} )}, \\&H_{33}^{(i)} =[(\sigma _2 -1)(EI_i k_{ym}^3 +\rho _i I_i \omega ^{2}k_{ym} )-\kappa GA_i \sigma _2 k_{ym} ], \\&H_{34}^{(i)} =[(\sigma _2 -1)(EI_i k_{ym}^3 +\rho _i I_i \omega ^{2}k_{ym} )-\kappa GA_i \sigma _2 k_{ym} ]e^{\lambda _{4m} (x_i -x_{i-1} )}, \\&H_{35}^{(i)} =(\kappa GA_i -EI_i k_{ym}^2 \eta _m +\rho _i I_i \omega ^{2})\lambda _{5m} , \quad H_{36}^{(i)} =(\kappa GA_i -EI_i k_{ym}^2 \eta _m +\rho _i I_i \omega ^{2})\lambda _{6m} e^{\lambda _{6m} (x_i -x_{i-1} )}. \end{aligned}$$

The elements \({\varvec{\Pi }} _{01}\) and \({\varvec{\Pi }} _{(N+1)2}\) can be determined by the boundary conditions at the edges \(x =0\) and \(x=L_{x}\), and they are different for the different boundary conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, J. & Li, F. Power transmission and suppression characteristics of stiffened Mindlin plate under different boundary constraints. Arch Appl Mech 89, 1705–1721 (2019). https://doi.org/10.1007/s00419-019-01538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01538-9

Keywords

Navigation