Skip to main content
Log in

Micromechanics analysis for thermal expansion coefficients of three-phase particle composites

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the present investigation, a new equivalent micromechanics method is proposed, and then, an analysis model has been developed to estimate the nonlinear coefficients of thermal expansion (CTEs) of three-phase composites. As Compared with previous analytical models, the innovative point of this paper is that the influence of the debonding surface thickness is investigated. It is noted that the parameters of thickness of debonding surface have a significant effect on both the longitudinal CTEs and transverse CTEs. The CTEs of composites are also very sensitive to the different inclusion aspect ratios. The constitutive equation curves for different variable parameters can describe the influence of debonding damage on thermal expansion coefficients (CTEs) of the composites. The new model provides a direct prediction of CTEs and can account for the effects of inclusion aspect ratio, volume fractions and thickness of debonding surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yang, B.J., Kim, B.R., Lee, H.K.: Micromechanics-based viscoelastic damage model for particle-reinforced polymeric composites. Acta Mech. 223(6), 1307–1321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng, Y., Bian, L., Wang, Y., Farid, T.: Influences of reinforcing particle and interface bonding strength on material properties of Mg/Nano-particle composites. Int. J. Solids Struct. 51(18), 3168–3176 (2014)

    Article  Google Scholar 

  3. Lee, K.Y., Kim, K.H., Jeoung, S.K., et al.: Thermal expansion behavior of composites based on axisymmetric ellipsoidal particles. Polymer 48(14), 4174–4183 (2007)

    Article  Google Scholar 

  4. Shubin, S.N., Freidin, A.B., Akulichev, A.G.: Elastomer composites based on filler with negative thermal expansion coefficient in sealing application. Arch. Appl. Mech. 86(1–2), 351–360 (2016)

    Article  Google Scholar 

  5. Bian, L., Liu, W., Pan, J.: Probability of debonding and effective elastic properties of particle-reinforced composites. J. Mech. 33(6), 789–796 (2017)

    Article  Google Scholar 

  6. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. Ser. A. 240, 376–96 (1957)

    MathSciNet  MATH  Google Scholar 

  7. Mori, T., Tanaka, K.: Average stress in matrix and average energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  8. Bian, L., Zhao, H.: Elastic properties of a single-walled carbon nanotube under a thermal environment. Compos. Struct. 121, 337–343 (2015)

    Article  Google Scholar 

  9. Makarian, K., Santhanam, S., Wing, Z.N.: Coefficient of thermal expansion of particulate composites with ceramic inclusions. Ceram. Int. 42(15), 17659–17665 (2016)

    Article  Google Scholar 

  10. Lu, P.: Further studies on Mori–Tanaka models for thermal expansion coefficients of composites. Polymer 54(6), 1691–1699 (2013)

    Article  Google Scholar 

  11. Kumar, R., Kaur, M.: Reflection and refraction of plane waves at the interface of an elastic solid and microstretch thermoelastic solid with microtemperatures. Arch. Appl. Mech. 84(4), 571–590 (2014)

    Article  MATH  Google Scholar 

  12. Gusev, A.A.: Effective coefficient of thermal expansion of n -layered composite sphere model: exact solution and its finite element validation. Int. J. Eng. Sci. 84(11), 54–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sideridis, E.: Thermal expansion coefficients of fiber composites defined by the concept of the interphase. Compos. Sci. Technol. 51(3), 301–317 (1994)

    Article  MathSciNet  Google Scholar 

  14. Turner, P.S.: Thermal-expansion stress in reinforced plastics. J. Res. Natl. Bur. Stand. 37, 239–550 (1946)

    Article  Google Scholar 

  15. Kerner, E.H.: The elastic and thermoelastic properties of composite media. Proc. Phys. Soc. B 69, 808–813 (1956)

    Article  Google Scholar 

  16. Chensong, D.: Development of a model for predicting the transverse coefficients of thermal expansion of unidirectional carbon fiber reinforced composites. Appl. Compos. Mater. 15, 171–182 (2008)

    Article  Google Scholar 

  17. Schapery, R.A.: Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2(3), 380–404 (1968)

    Article  Google Scholar 

  18. Rupani, S.V., Dev, R., Jani, S.S., et al.: Experimental evaluation of coefficient of thermal expansion of carbon fiber reinforced polymer tube. Int. J. Adv. Eng. Res. Dev. 4(4), 428–433 (2017)

    Google Scholar 

  19. Islam, M.R., Sjölind, S.G., Pramila, A.: Finite element analysis of linear thermal expansion coefficients of unidirectional cracked composites. J. Compos. Mater. 35(19), 1762–1776 (2001)

    Article  Google Scholar 

  20. Sideridis, E.P., Venetis, J.C.: Thermal expansion coefficient of particulate composites defined by the particle contiguity. Int. J. Microstruct. Mater. Prop. 9, 292–313 (2014)

    Google Scholar 

  21. Karadeniz, Z.H., Kumlutas, D.: A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos. Struct. 78(1), 1–10 (2007)

    Article  Google Scholar 

  22. Odegard, G.M., Harik, V.M., Wise, K.E., et al.: Constitutive modeling of nanotube-reinforced polymer composite systems. Compos. Sci. Technol. 63(11), 1671–1687 (2003)

    Article  Google Scholar 

  23. Karevan, M., Pucha, R.V., Bhuiyan, M.A., Kalaitzidou, K.: Effect of interphase modulus and nanofiller agglomeration on the tensile modulus of graphite nanoplatelets and carbon nanotube reinforced polypropylene nanocomposites. Carbon Lett. 11(4), 325–331 (2010)

    Article  Google Scholar 

  24. Nawab, Y., Jacquemin, F., Casari, P., Boyard, N., Borjon-Piron, Y., Sobotka, V.: Study of variation of thermal expansion coefficients in carbon/epoxy laminated composite plates. Compos. Part B: Eng. 50, 144–149 (2013)

    Article  Google Scholar 

  25. Shaker, K., et al.: Effect of silica particle loading on shape distortion in glass/vinyl ester-laminated composite plates. J. Text. Inst. 109(5), 656–664 (2018)

    Article  Google Scholar 

  26. González-Benito, J., Castillo, E., Caldito, J.F.: Coefficient of thermal expansion of TiO2 filled EVA based nanocomposites. A new insight about the influence of filler particle size in composites. Eur. Polym. J. 49(7), 1747–1752 (2013)

    Article  Google Scholar 

  27. Shunmugasamy, V.C., Pinisetty, D., Gupta, N.: Thermal expansion behavior of hollow glass particle/vinyl ester composites. J. Mater. Sci. 47(14), 5596–5604 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Science Research Foundation of Hebei Advanced Institutes (ZD2017075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichun Bian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The components of Eshelby’s \( S_{mnpq} \) tensor for different shapes of inclusions are provided as follows.

For the fiber-liked particles ( \( a_1 >a_2 =a_3 ) \),

$$\begin{aligned} S_{1111}= & {} \frac{1}{\left( {2-2\upsilon _m } \right) }\left[ {1-2\upsilon _m +\frac{3\lambda ^{2}-1}{\lambda ^{2}-1}-\left( {1-2\upsilon _m +\frac{3\lambda ^{2}}{\lambda ^{2}-1}} \right) \varphi } \right] \\ S_{1122}= & {} S_{1133} =\frac{-1}{\left( {2-2\upsilon _m } \right) }\left[ {1-2\upsilon _m +\frac{1}{\lambda ^{2}-1}} \right] +\frac{1}{\left( {2-2\upsilon _m } \right) }\left[ {1-2\upsilon _m +\frac{3}{2\left( {\lambda ^{2}-1} \right) }} \right] \varphi \\ S_{1212}= & {} S_{1313} =\frac{1}{\left( {4-4\upsilon _m } \right) }\left\{ {1-2\upsilon _m -\frac{\lambda ^{2}+1}{\lambda ^{2}-1}-\frac{1}{2}\left[ {1-2\upsilon _m +\frac{3\lambda ^{2}+3}{\lambda ^{2}-1}} \right] \varphi } \right\} \\ S_{2222}= & {} S_{3333} =\frac{3}{\left( {8-8\upsilon _m } \right) }\frac{\lambda ^{2}}{\lambda ^{2}-1}+\frac{1}{\left( {4-4\upsilon _m } \right) }\left[ {1-2\upsilon _m -\frac{9}{4\left( {\lambda ^{2}-1} \right) }} \right] \varphi \\ S_{2211}= & {} S_{3311} =\frac{1}{\left( {2-2\upsilon _m } \right) }\frac{\lambda ^{2}}{\lambda ^{2}-1}-\frac{1}{\left( {4-4\upsilon _m } \right) }\left[ {\frac{3\lambda ^{2}}{\lambda ^{2}-1}-\left( {1-2\upsilon _m } \right) } \right] \varphi \\ S_{2233}= & {} S_{3322} =\frac{1}{\left( {4-4\upsilon _m } \right) }\left[ {\frac{\lambda ^{2}}{2\lambda ^{2}-2}-\left( {1-2\upsilon _m +\frac{3}{4\lambda ^{2}-4}} \right) \varphi } \right] \\ S_{2323}= & {} S_{3232} =\frac{1}{\left( {4-4\upsilon _m } \right) }\left[ {\frac{\lambda ^{2}}{2\lambda ^{2}-2}+\left( {1-2\upsilon _m -\frac{3}{4\lambda ^{2}-4}} \right) \varphi } \right] \end{aligned}$$

where \( \upsilon _m \) is the Poisson’s ratio of the matrix, \(\lambda \) is the aspect ratio of the particles ( \( \lambda =a_1 /a_3)\), and \( \varphi \) is given as

$$\begin{aligned} \varphi= & {} \frac{\lambda }{\left( {\lambda ^{2}-1} \right) ^{3/2}}\left[ {\lambda \left( {\lambda ^{2}-1} \right) ^{1/2}-\hbox {cos}h^{-1}\lambda } \right] , \quad \left( {\lambda >1} \right) \\ \varphi= & {} \frac{\lambda }{\left( {1-\lambda ^{2}} \right) ^{3/2}}\left[ {\hbox {cos}h^{-1}\lambda -\lambda \left( {1-\lambda ^{2}} \right) ^{1/2}} \right] , \quad \left( {\lambda <1} \right) \end{aligned}$$

For the spherical particles \(( a_1 =a_2 =a_3 ) \),

$$\begin{aligned} S_{1111}= & {} S_{2222} =S_{3333} =\frac{7-5\upsilon _m }{15-15\upsilon _m} \\ S_{1122}= & {} S_{2233} =S_{3311} =\frac{5\upsilon _m -1}{15-15\upsilon _m} \\ S_{1212}= & {} S_{2323} =S_{3131} =\frac{4-5\upsilon _m }{15-15\upsilon _m} \end{aligned}$$

For the penny-liked inclusions ( \( {a_1 }/{a_3 }\ll 0) \),

$$\begin{aligned} S_{1111}= & {} 1-\frac{1-2\upsilon _m }{\left( {4-4\upsilon _m } \right) }\pi \lambda , \qquad \quad S_{2222} =S_{3333} =\frac{8\upsilon _m -13}{\left( {32-\upsilon _m } \right) }\pi \lambda , \\ S_{2233}= & {} S_{3322} =\frac{8\upsilon _m -1}{\left( {32-\upsilon _m } \right) }\pi \lambda , \quad S_{2211} =S_{3311} =\frac{2\upsilon _m -1}{\left( {8-8\upsilon _m } \right) }\pi \lambda , \\ S_{1122}= & {} S_{1133} =\frac{\upsilon _m }{1-\upsilon _m }\left( {1-\frac{1+4\upsilon _m }{8\upsilon _m }\pi \lambda } \right) , \\ S_{2323}= & {} \frac{7-8\upsilon _m }{\left( {32-32\upsilon _m } \right) }\pi \lambda , \quad S_{1212} =S_{1313} =\frac{1}{2}\left[ {1-\frac{2-\upsilon _m }{4\left( {1-\upsilon _m } \right) }\pi \lambda } \right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, L., Guo, J. & Pan, J. Micromechanics analysis for thermal expansion coefficients of three-phase particle composites. Arch Appl Mech 89, 1641–1654 (2019). https://doi.org/10.1007/s00419-019-01533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01533-0

Keywords

Navigation