Skip to main content
Log in

Looking at the collapse modes of circular and pointed masonry arches through the lens of Durand-Claye’s stability area method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper addresses the problem of characterizing the mechanical behaviour and collapse of symmetric circular and pointed masonry arches subject to their own weight. The influence on the arch’s collapse features of its shape and thickness, as well as the friction between the arch’s voussoirs, is analysed. The safety level of arches is then investigated by suitably reworking in semi-analytical form the graphical method of the stability area proposed by the renowned nineteenth century French scholar, Durand-Claye. According to Durand-Claye’s method, the arch is safe if along any given joint both the bending moment and shear force do not exceed the values determined by some given limit condition. The equilibrium conditions corresponding to all possible symmetric collapse modes are individuated. As was expected, pointed and circular arches exhibit different collapse behaviours, in terms of both collapse modes and safe domain. The limit values of arch thickness and friction coefficient are determined and the results obtained consistently compared with those published by Michon in 1857.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Michon, P.F.: Instruction Sur la Stabilité des Voûtes et des Murs de Revêtement. Lithographie de l’École d’Application, Metz (1857)

    Google Scholar 

  2. Foce, F.: Sulla teoria dell’arco murario. Una rilettura storico-critica. In: Becchi, A., Foce, F. (eds.) Degli Archi e Delle Volte. Arte del Costruire Tra Meccanica e Stereotomia, pp. 131–248. Marsilio, Venezia (2002)

    Google Scholar 

  3. Huerta, S., Foce, F.: Vault theory in Spain between XVIIIth and XIXth century: Monasterio’s unpublished manuscript Nueva teorica sobre el empuje de bovedas. In: Huerta, S. (ed.) Proceedings of the First International Congress on Construction History, vol. 2, pp. 1155–1166. Instituto Juan de Herrera, Madrid (2003)

  4. Persy, N.: Cours sur la Stabilité des Constructions, à L’usage des Élèves de L’école Royale de l’Artillerie et du Génie. Lithographie de l’Ecole Royale de l’Artillerie et du Génie, Metz (1825)

    Google Scholar 

  5. Navier, C.L.M.H.: Résumé des Leçons Données à L’École des Ponts et Chaussées sur L’application de la Mécanique à L’établissement des Constructions et des Machines. Didot, Paris (1826)

    Google Scholar 

  6. Poncelet, J.V.: Solution graphique des principales questions sur la stabilité des voûtes. Mémorial de l’Officier du Génie 12, 151–213 (1835)

    Google Scholar 

  7. Coulomb, C.A.: Essai sur une application des règles de maximis et minimis à quelques problèmes de statique, relatifs à l’architecture. Mémoires de Mathématique et de Physique, Présentés à l’Académie Royale des Sciences par Divers Savans 7(année 1773), 343–382 (1776)

    Google Scholar 

  8. Frézier, A.F.: La théorie et la Pratique de la Coupe des Pierres et des Bois Pour la Construction des Voûtes et Autres Parties des Bâtimens Civils et Militaires ou Traité De stéréotomie à L’usage de L’architecture, vol. 3, pp. 380–388. JD Doulsseker fils, Strasbourg / CA Jombert, Paris (1737–1739)

  9. Durand-Claye, A.: Note sur la vérification de la stabilité des voûtes en maçonnerie et sur l’emploi des courbes de pression. Annales des Ponts et Chaussées 13, 63–93 (1867)

    Google Scholar 

  10. Durand-Claye, A.: Note sur la verification de la stabilité des arcs métalliques et sur l’emploi des courbes de pression. Annales des Ponts et Chaussées 15, 109–144 (1868)

    Google Scholar 

  11. Michalowski, R., Mroz, Z.: Associated and non-associated sliding rules in contact friction problems. Arch. Mech. 30(3), 259–276 (1978)

    MATH  Google Scholar 

  12. Boothby, T.: Stability of masonry piers and arches including sliding. J. Eng. Mech. 120(2), 304–319 (1994)

    Article  Google Scholar 

  13. Baggio, C., Trovalusci, P.: Limit analysis for no-tension and frictional three-dimensional discrete systems. Mech. Struct. Mach. 26, 287–304 (1998)

    Article  Google Scholar 

  14. Baggio, C., Trovalusci, P.: Collapse behaviour of three-dimensional brick-block systems using non-linear programming. Struct. Eng. Mech. 10(2), 181–195 (2000)

    Article  Google Scholar 

  15. Casapulla, C., Lauro, F.: A simple computation tool for the limit-state analysis of masonry arches. In: Proceedings of the 5th International Congress on Restoration of Architectural Firenze Heritage 2000, pp 2056–2064. Florence, Italy, 17–24 September 2000 (2001)

  16. Casapulla, C.: Dry rigid block masonry: safe solutions in presence of Coulomb friction. Trans. Built Environ. 55, 251–261 (2001)

    Google Scholar 

  17. Drucker, D.C.: Coulomb friction, plasticity and limit load. J. Appl. Mech. 20, 71–74 (1954)

    Google Scholar 

  18. Foce, F., Aita, D.: The masonry arch between ‘limit’ and ‘elastic’ analysis. A critical re-examination of Durand-Claye’s method. In: Huerta, S. (ed.) Proceedings of the First International Congress on Construction History, Madrid, 20–24 January 2003, vol. 2, pp. 895–908. Instituto Juan de Herrera, Madrid (2003)

  19. Foce, F., Sinopoli, A.: Stability and strength of materials for static analysis of masonry arches: Durand-Claye’s method. In: Abdunur, C. (ed.) Arch ‘01-Third International Conference on Arch Bridges, pp. 437–443. Presses de l’École Nationale des Ponts et Chaussées, Paris (2001)

  20. Ciblac, T., Fantin, M.: Rediscovering Durand-Claye’s method using force network method implemented for construction history. In: Fifth International Construction History Congress, vol. 1, pp. 439–446. Chicago, 06/2015

  21. Méry, E.: Sur l’équilibre des voûtes en berceau. Annales des Ponts et Chaussées 19, 50–70 (1840)

    Google Scholar 

  22. Aita, D., Barsotti, R., Bennati, S.: Equilibrium of pointed, circular and elliptical masonry arches bearing vertical walls. J. Struct. Eng. ASCE 138(7), 880–888 (2012). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000522. (Online: 2011; Print: 2012)

  23. Aita, D., Barsotti, R., Bennati, S.: Influence of the wall shape on the collapse of arch-wall systems. In: Cruz, P.J.S. (ed.) Structures and Architecture. Beyond their Limits. Proceedings of the Third International Conference on Structures and Architecture (ICSA 2016), Guimarães, Portugal, 27–29 July 2016. CRC Press/Balkema, Leiden, Hardback + CD ROM: ISBN 978-1-138-02651-3; eBook pdf: ISBN 978-1-315-73076-9 (2016). (extended abstract 213–214; paper su CD-ROM)

  24. Heyman, J.: The stone skeleton. Int. J. Solid Struct. 2(2), 249–279 (1966)

    Article  Google Scholar 

  25. Aita, D., Barsotti, R., Bennati, S., Foce, F.: The statics of pointed masonry arches between ‘limit’ and ‘elastic’ analysis. In: Roca, P., Molins, C. (eds.) Arch Bridges IV. Advances in assessment, structural design and construction, pp. 354–362. CIMNE, Barcelona (2004)

  26. Nikolic, D.: Thrust line analysis and the minimum thickness of pointed masonry arches. Acta Mech. 228, 2219–2236 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ochsendorf, M.J., Romano, A.: The mechanics of Gothic masonry arches. Int. J. Archit. Herit. 4(1), 59–82 (2010)

    Article  Google Scholar 

  28. Lengyel, G., Bagi, K.: Numerical analysis of the mechanical role of the ribs in groin vaults. Comput. Struct. 158, 42–60 (2015)

    Article  Google Scholar 

  29. Cavalagli, N., Gusella, V., Severini, L.: Lateral loads carrying capacity and minimum thickness of circular and pointed masonry arches. Int. J. Mech. Sci. 115–116, 645–656 (2016)

    Article  Google Scholar 

  30. Lengyel, G.: Minimum thickness of the Gothic arch. Arch. Appl. Mech. 88, 769–788 (2018)

    Article  Google Scholar 

  31. Aita, D., Barsotti, R., Bennati, S.: Notes on limit and nonlinear elastic analyses of masonry arches. In: Aita, D., Pedemonte, O., Williams, K. (eds.) Masonry Structures: Between Mechanics and Architecture, pp. 237–264. Birkhäuser, Basel (2015). https://doi.org/10.1007/978-3-319-13003-3_9. Print ISBN 978-3-319-13002-6, Online ISBN 978-3-319-13003-3

  32. Barsotti, R., Aita, D., Bennati, S.: Analysis of rotational and sliding collapse modes of masonry arches via Durand-Claye’s method. In: Proceedings of 3rd International Conference on Construction and Building Engineering (ICONBUILD 2017), Palembang, Indonesia, 14–17 August 2017

  33. Aita, D., Barsotti, R., Bennati, S.: A modern reinterpretation of Durand-Claye’s method for the study of equilibrium conditions of masonry domes. In: Ascione, L., et al. (eds.) Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA 2017), vol. 4, pp. 1459–1471, Salerno, 4th–7th September 2017

  34. Milankovitch, M.: Beitrag zur Theorie der Druckkurven. Dissertation zur Erlangung der Doktorwürde, K.K. technische Hochschule, Wien (1904)

  35. Milankovitch, M.: Theorie der Druckkurven. Z. Math. Phys. 55, 1–27 (1907)

    MATH  Google Scholar 

  36. Makris, N., Alexakis, H.: The effect of stereotomy on the shape of the thrust-line and the minimum thickness of semicircular masonry arches. Arch. Appl. Mech. 83, 1511–1533 (2013)

    Article  MATH  Google Scholar 

  37. Alexakis, H., Makris, N.: Minimum thickness of elliptical masonry arches. Acta. Mech. 224, 2977–2991 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Alexakis, H., Makris, N.: Limit equilibrium analysis of masonry arches. Arch. Appl. Mech. 85, 1363–1381 (2015)

    Article  MATH  Google Scholar 

  39. Cocchetti, G., Colasante, G., Rizzi, E.: On the analysis of minimum thickness in circular masonry arches. Appl. Mech. Rev. 64(5), 1–27 (2012)

    Article  Google Scholar 

  40. Rizzi, E., Rusconi, F., Cocchetti, G.: Analytical and numerical DDA analysis on the collapse mode of circular masonry arches. Eng. Struct. 60, 241–257 (2014)

    Article  Google Scholar 

  41. Franciosi, V.: L’attrito nel calcolo a rottura delle murature. Giornale del Genio Civile 118, 215–234 (1980)

    Google Scholar 

  42. Casapulla, C., Jossa, P.: Le strutture murarie a blocchi. In: Di Pasquale, S., Feletti, I. (eds.) Costruzioni Voltate in Muratura, pp. 155–181. Libreria Alfani, Firenze (2002)

    Google Scholar 

  43. Sinopoli, A., Aita, D., Foce, F.: Further remarks on the collapse of masonry arches with Coulomb friction. In: Lourenço, P.B., Oliveira, D.V., Portela, A. (eds.) ARCH’07, Proceedings of 5th International Conference on Arch Bridges. University of Minho, Guimarães (Portugal), pp. 649–657. Madeira, 12–14 September 2007

  44. D’Ayala, D., Casapulla, C.: Limit state analysis of hemispherical domes with finite friction. In: Lourenco, P.B., Roca, P. (eds.) Proceedings of the III International Seminar on Structural Analysis of Historical Constructions, SAHC01, pp. 617–626, Guimaraes, Portugal, 7–9 November 2001

  45. Casapulla, C., Jossa, P.: Le strutture murarie a blocchi. In: Feletti, I. (ed.) Costruzioni Voltate in Muratura. Libreria Alfani, Firenze, pp. 155–181

  46. D’Ayala, D.F., Tomasoni, E.: Three-dimensional analysis of masonry vaults using limit state analysis with finite friction. Int. J. Archit. Herit. 5(2), 140–171 (2011)

    Article  Google Scholar 

  47. Goyal, S., Ruina, A., Papadopoulos, J.: Planar sliding with dry friction. Part l. Limit surface and moment function. Wear 143(2), 307–330 (1991)

    Article  Google Scholar 

  48. de La Hire, P.: Sur la Construction des Voûtes Dans les Edifices, pp. 69–77. Mémoires de l’Académie Royale des Sciences, Année 1712, Paris (1731)

    Google Scholar 

  49. Sinopoli, A., Corradi, M., Foce, F.: Modern formulation for preelastic theories on masonry arches. J. Eng. Mech. 123, 204–213 (1997)

    Article  Google Scholar 

  50. Gilbert, M., Casapulla, C., Ahmed, A.H.: Limit analysis of masonry block structures with non-associative frictional joints using linear programming. Comput. Struct. 84, 873–887 (2006)

    Article  Google Scholar 

  51. Rizzi, E., Colasante, G., Frigerio, A., Cocchetti, G.: On the mixed collapse mechanism of semi-circular masonry arches. In: Jasieńko, J. (ed.) Structural Analysis of Historical Constructions: Proceedings of the 8th International Conference on Structural Analysis of Historical Constructions, SAHC 2012, pp. 541–549. Wrocław, Poland, DWE, Wrocław, 15–17 October 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Bennati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aita, D., Barsotti, R. & Bennati, S. Looking at the collapse modes of circular and pointed masonry arches through the lens of Durand-Claye’s stability area method. Arch Appl Mech 89, 1537–1554 (2019). https://doi.org/10.1007/s00419-019-01526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01526-z

Keywords

Navigation