Skip to main content
Log in

Interface instability of an inelastic normal collision

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The interface of two normal colliding media is always unstable. This is true even for both media showing the same density. The common precondition for a Rayleigh–Taylor instability “the lighter medium pushes the heavier” is generalised for the case that two media experience different accelerations in a short period after colliding. The arithmetic average of the accelerations determines the evolution of the wavy interface shape. The theory is applicable for various technologies of impact welding, such as explosion and magnetic pulse welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ben-Artzy, A., Stern, A., Frage, N., Shribman, V., Sadot, O.: Wave formation mechanism in magnetic pulse welding. Int. J. Impact Eng. 37(4), 397–404 (2010). https://doi.org/10.1016/j.ijimpeng.2009.07.008

    Article  Google Scholar 

  2. Carpenter, S., Wittman, R.: Explosion welding. Annu. Rev. Mater. Sci. 5(1), 177–199 (1975)

    Article  Google Scholar 

  3. Carton, E.: Wave forming mechanisms in explosive welding. In: Explosion, Shock Wave and Hypervelocity Phenomena in Materials, Materials Science Forum, vol. 465, pp. 219–224. Trans Tech Publications (2004). https://doi.org/10.4028/www.scientific.net/MSF.465-466.219

    Article  Google Scholar 

  4. Cowan, G.R., Bergmann, O.R., Holtzman, A.H.: Mechanism of bond zone wave formation in explosion-clad metals. Metall. Mater. Trans. B 2(11), 3145–3155 (1971)

    Article  Google Scholar 

  5. Godunov, S., Deribas, A., Zabrodin, A., Kozin, N.: Hydrodynamic effects in colliding solids. J. Comput. Phys. 5(3), 517–539 (1970). https://doi.org/10.1016/0021-9991(70)90078-1

    Article  Google Scholar 

  6. Groche, P., Wagner, M.X., Pabst, C., Sharafiev, S.: Development of a novel test rig to investigate the fundamentals of impact welding. J. Mater. Process. Technol. 214(10), 2009–2017 (2014). https://doi.org/10.1016/j.jmatprotec.2013.10.008

    Article  Google Scholar 

  7. Hohenemser, K., Prager, W.: Fundamental equations and definitions concerning the mechanics of isotropic continual. J. Rheol. 3(1), 16–22 (1932). https://doi.org/10.1122/1.2116434

    Article  MATH  Google Scholar 

  8. Lee, K.J., Kumai, S., Arai, T., Aizawa, T.: Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding. Mater. Sci. Eng. A 471(1–2), 95–101 (2007). https://doi.org/10.1016/j.msea.2007.04.033

    Article  Google Scholar 

  9. Newman, J.N.: Marine Hydrodynamics. MIT Press, Cambridge (1977)

    Google Scholar 

  10. Piriz, A., J.L, C., O, C., N, T., D, H.: Rayleigh–Taylor instability in elastic solids. Phys. Rev. E 72(5), 056–313 (2005)

    Article  Google Scholar 

  11. Piriz, A., Cela, J.L., Tahir, N.: Linear analysis of incompressible Rayleigh–Taylor instability in solids. Phys. Rev. E 80(4), 046–305 (2009)

    Article  Google Scholar 

  12. Piriz, A.R., Sun, Y.B., Tahir, N.A.: Rayleigh–Taylor instability in accelerated solid media. Eur. J. Phys. 38(1), 015–003 (2017). http://stacks.iop.org/0143-0807/38/i=1/a=015003

    Article  Google Scholar 

  13. Reid, S.: A discussion of the mechanism of interface wave generation in explosive welding. Int. J. Mech. Sci. 16(6), 399–413 (1974). https://doi.org/10.1016/0020-7403(74)90014-9

    Article  Google Scholar 

  14. Reid, S.R., Langdale, D.J.: Investigation of the modulation of interface waves in explosive welding. In: Tobias, S.A., Koenigsberger, F. (eds.) Proceedings of the Fifteenth International Machine Tool Design and Research Conference, pp. 391–398. Macmillan Education, London (1975). https://doi.org/10.1007/978-1-349-01986-1-46

  15. Weddeling, C.: Electromagnetic form-fit joining. Ph.D. thesis, Technische Universität Dortmund (2015)

  16. Zhang, Y., Babu, S.S., Prothe, C., Blakely, M., Kwasegroch, J., LaHa, M., Daehn, G.S.: Application of high velocity impact welding at varied different length scales. J. Mater. Process. Technol. 211(5), 944–952 (2011). https://doi.org/10.1016/j.jmatprotec.2010.01.001. (Special issue: Impulse forming)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Pelz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelz, P.F., Kuhr, M.M.G. Interface instability of an inelastic normal collision. Arch Appl Mech 88, 1945–1951 (2018). https://doi.org/10.1007/s00419-018-1420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1420-8

Keywords

Navigation