Skip to main content
Log in

Fatigue life and defect tolerance calculation for specimens with foreign object impact and scratch damage

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a new method is proposed to calculate the fatigue life and defect tolerance for a 30CrMnSiA steel specimen with foreign object impact damage and scratch damage. First, the processes of foreign object impact and scratch are simulated. Then, the Lemaitre’s plasticity damage model is adopted to calculate the initial damage field arising from the impact process and scratch process. Second, the Chaudonneret’s damage model is applied to calculate the fatigue damage for the specimen with a defect under multiaxial fatigue loading. Then, the FE implementation of the damage mechanics model is presented in the platform of ANSYS, in which the coupling effect between the stress and damage fields is considered. Finally, this proposed method is applied to fatigue life and defect tolerance calculation for the 30CrMnSiA steel specimen with an impact defect and a scratch defect. The experiments were conducted to evaluate the approach mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(\sigma _{ij}\) :

Stress components

\(\varepsilon _{ij}\) :

Strain components

\(\lambda \), \(\mu \) :

Lamé constants

\(\delta _{ij}\), \(\delta _{kl}\) :

Kronecker delta

\(\varepsilon _\mathrm{eff}^p\) :

Effective strain

\(\dot{\varepsilon }_\mathrm{eff}^p\) :

Effective strain rate

\(\sigma _y (\varepsilon _\mathrm{eff}^p )\) :

Yield stress

\(\sigma _{\mathrm{a}}\) :

Stress amplitude

\(\sigma _{\max }\) :

Maximum stress

\(\sigma _\mathrm{m}\) :

Mean stress

\(\bar{{\sigma }}_\mathrm{m}\) :

Effective mean stress

D :

Damage variable

E :

Young’s Modulus

\(E_\mathrm{D}\) :

Young’s Modulus with damage

\(\sigma _\mathrm{eq}\) :

Equivalent stress

\(\dot{p}\) :

Rate of accumulated plastic strain

\(R_\nu \) :

Stress triaxiality function

\(\sigma _\mathrm{H}\) :

Hydrostatic stress

Sm :

Parameters of plasticity damage model

\(\Delta p\) :

Accumulated plastic strain

\(\sigma _\mathrm{u}\) :

Ultimate tensile stress

\(\sigma _\mathrm{l0} \) :

Fatigue limit

\(D_{0 }\) :

Initial damage

\(A_{\textit{II}}\) :

Amplitude of the octahedral shear stress

\(\sigma _\mathrm{H,m}\) :

Mean hydrostatic stress

\(\beta , a, M_0 , b_1 , b_2\) :

Parameters of elasticity damage model

\(S_{ij,\max }\) :

Maximum values of the deviatoric stress tensor components

\(S_{ij,\min }\) :

Minimum values of the deviatoric stress tensor components

\(\sigma _{\mathrm{e},\max }\) :

Maximum equivalent stress over a loading cycle

\(A_{\textit{II}}^*\) :

Sines fatigue limit criterion

\(N_\mathrm{F}\) :

Fatigue life

References

  1. Bathias, C., Pineau, A.: Fatigue of Materials and Structures. Wiley, Hoboken (2011)

    Google Scholar 

  2. Lazzeri, L., Mariani, U.: Application of damage tolerance principles to the design of helicopters. Int. J. Fatigue 31(6), 1039–1045 (2009)

    Article  MATH  Google Scholar 

  3. Zhan, Z., Hu, W., Zhang, M., et al.: The fatigue life prediction for structure with surface scratch considering cutting residual stress, initial plasticity damage and fatigue damage. Int. J. Fatigue 74, 173–182 (2015)

    Article  Google Scholar 

  4. Zhan, Z., Hu, W., Zhang, M., et al.: Experimental method for and theoretical research on defect tolerance of fixed plate based on damage mechanics. Chin. J. Aeronaut. 26(5), 1195–1201 (2013)

    Article  Google Scholar 

  5. Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  6. Gonçalves, C.A., Araújo, J.A., Mamiya, E.N.: Multiaxial fatigue: a simple stress based criterion for hard metals. Int. J. Fatigue 27, 177–187 (2005)

    Article  MATH  Google Scholar 

  7. Teng, T.L., Fung, C.P., Chang, P.H.: Effect of weld geometry and residual stresses on fatigue in butt-welded joints. Int. J. Press. Vessels Pip. 79(7), 467–482 (2002)

    Article  Google Scholar 

  8. Stanfield, G.: Discussion on the strength of metals under combined alternating stresses. In: Proceedings of the Institution of Mechanical Engineers, vol. 131, p. 93 (1935)

  9. Stulen, F., Cummings, H.: A failure criterion for multi-axial fatigue stresses. In: Proceedings-American Society for Testing and Materials, pp. 822–835 (1954)

  10. Chaboche, J.L.: Continuous damage mechanics—a tool to describe phenomena before crack initiation. Nucl. Eng. Des. 64(2), 233–247 (1981)

    Article  Google Scholar 

  11. Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  12. Lemaitre, J., Lippmann, H.: A Course on Damage Mechanics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  13. Peters, J., Ritchie, R.: Foreign-object damage and high-cycle fatigue of Ti-6Al-4V. Mater. Sci. Eng. 319, 597–601 (2001)

    Article  Google Scholar 

  14. Nowell, D., Duo, P., Stewart, I.F.: Prediction of fatigue performance in gas turbine blades after foreign object damage. Int. J. Fatigue 25(9), 963–969 (2003)

    Article  Google Scholar 

  15. Oakley, S.Y., Nowell, D.: Prediction of the combined high-and low-cycle fatigue performance of gas turbine blades after foreign object damage. Int. J. Fatigue 29(1), 69–80 (2007)

    Article  Google Scholar 

  16. Withers, P.J.: Residual stress and its role in failure. Rep. Prog. Phys. 70(12), 2211 (2007)

    Article  Google Scholar 

  17. Lara, A., Picas, I., Casellas, D.: Effect of the cutting process on the fatigue behaviour of press hardened and high strength dual phase steels. J. Mater. Process. Technol. 213(11), 1908–1919 (2013)

    Article  Google Scholar 

  18. Schijve, J.: Fatigue of Structures and Materials. Springer, Berlin (2008)

    MATH  Google Scholar 

  19. Kachanov, L.M.: Fundamentals of the Theory of Plasticity. Courier Corporation, North Chelmsford (2004)

    Google Scholar 

  20. Logan, D.: A First Course in the Finite Element Method. Cengage Learning, Boston (2011)

    Google Scholar 

  21. Kaneko, I.: Piecewise linear elastic-plastic analysis. Int. J. Numer. Methods Eng. 14(5), 757–767 (1979)

    Article  MATH  Google Scholar 

  22. Trent, E.M., Wright, P.K.: Metal Cutting. Butterworth-Heinemann, Boston (2000)

    Google Scholar 

  23. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  24. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, Berlin (2005)

    Google Scholar 

  25. Chaboche, J.L., Lesne, P.M.: A nonlinear continuous fatigue damage model. Fatigue Fract. Eng. Mater. Struct. 11(1), 1–17 (1998)

    Article  Google Scholar 

  26. Chaudonneret, M.: A simple and efficient multiaxial fatigue damage model for engineering applications of macro-crack initiation. J. Eng. Mater. Technol. 115(4), 373–379 (1993)

    Article  Google Scholar 

  27. Sines, G.: Behavior of metals under complex static and alternating stresses. Metal Fatigue 1, 145–169 (1959)

    Google Scholar 

  28. Wu, X.R.: Handbook of Mechanical Properties of Aircraft Structural Metals. Aviation Industry Press, Beijing (1998)

    Google Scholar 

  29. Zhan, Z., Hu, W., Meng, Q., et al.: Continuum damage mechanics-based approach to the fatigue life prediction for 7050–T7451 aluminum alloy with impact pit. Int. J. Damage Mech. 25(7), 943–966 (2016)

    Article  Google Scholar 

  30. Zhan, Z., Hu, W., Shen, F., et al.: Fatigue life calculation for a specimen with an impact pit considering impact damage, residual stress relaxation and elastic–plastic fatigue damage. Int. J. Fatigue 96, 208–223 (2017)

    Article  Google Scholar 

  31. Zhan, Z., Hu, W., Li, B., et al.: Continuum damage mechanics combined with the extended finite element method for the total life prediction of a metallic component. Int. J. Mech. Sci. 124, 48–58 (2017)

    Article  Google Scholar 

  32. Zhang, T., McHugh, P.E., Leen, S.B.: Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue. Int. J. Fatigue 44, 260–72 (2012)

    Article  Google Scholar 

  33. Zhan, Z., Meng, Q., Hu, W., et al.: Continuum damage mechanics based approach to study the effects of the scarf angle, surface friction and clamping force over the fatigue life of scarf bolted joints. Int. J. Fatigue 102, 59–78 (2017)

    Article  Google Scholar 

  34. Hallquist, J.O.: LS-DYNA User’s Manual. Livermore Software Technology Corporation, Livermore (2000)

    Google Scholar 

  35. Torres, M.A.S., Voorwald, H.J.C.: An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int. J. Fatigue 24(8), 877–886 (2002)

    Article  Google Scholar 

  36. Lawrence, F.V., Burk, J.D., Yung, J.Y.: Influence of residual stress on the predicted fatigue life of weldments. ASTM Spec. Tech. Publ. 776, 33–43 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Z., Hu, W., Meng, Q. et al. Fatigue life and defect tolerance calculation for specimens with foreign object impact and scratch damage. Arch Appl Mech 88, 373–390 (2018). https://doi.org/10.1007/s00419-017-1313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1313-2

Keywords

Navigation