Skip to main content
Log in

Buckling analysis of thick plates on biparametric elastic foundation: a MAEM solution

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The meshless analog equation method, a purely meshless method, is applied to the buckling analysis of moderately thick plates described by Mindlin’s theory and resting on two-parameter elastic foundation (Pasternak type). The method is based on the concept of the analog equation, which converts the three governing second-order partial differential equations (PDEs) in terms of the three plate displacements (transverse displacement and two rotations) into three substitute equations, the analog equations. The analog equations constitute a set of three uncoupled Poisson’s equations under fictitious sources, which are approximated by multi-quadric radial basis functions (MQ-RBFs) series. This enables the direct integration of the analog equations and allows the representation of the sought solution by new RBFs series. These RBFs approximate accurately not only the displacements but also their derivatives involved in the governing equations. Then, inserting the approximate solution in the original PDEs and in the associated boundary conditions (BCs) and collocating at mesh-free nodal points, a generalized eigenvalue problem is obtained, which allows the evaluation of the buckling load and the buckling modes. The studied examples demonstrate the efficiency of the presented method that is its ability to solve accurately and in a straightforward way difficult engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. ASME 31, 491–498 (1964)

    Article  MATH  Google Scholar 

  2. Selvadurai, A.P.S.: Elastic Analysis of Soil-Foundation Interaction. Elsevier, New York (1979)

    Google Scholar 

  3. Katsikadelis, J.T.: The Boundary Element Method for Plate Analysis. Academic Press, Elsevier, Oxford (2014)

    MATH  Google Scholar 

  4. Xiang, Y., Kitipornchai, S., Liew, K.M.: Buckling and vibration of thick laminates on Pasternak foundatiion. J. Eng. Mech. ASCE 122(10), 54–63 (1996)

    Article  Google Scholar 

  5. Irschik, H.: Membrane-type eigenmodes of Mindlin plates. Acta Mech. 55, 1–20 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Akhavan, H., Hashemi Hosseini, Sh, Taher Damavandi Rokni, H., Alibeigloo, A., Vahabi, Sh: Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis. Comp. Mater. Sci. 44, 968–978 (2009)

    Article  Google Scholar 

  7. Akhavan, H., Hashemi Hosseini, Sh, Taher Damavandi Rokni, H., Alibeigloo, A., Vahabi, Sh: Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis. Comp. Mater. Sci. 44, 951–961 (2009)

    Article  Google Scholar 

  8. Lam, K.Y., Wang, C.M., He, X.Q.: Canonical exact solutions for Levy-plates on two-parameter foundation using Green’s functions. Eng. Struct. 22, 364–378 (2000)

    Article  Google Scholar 

  9. Matsunaga, H.: Vibration and stability of thick plates on elastic foundations. J. Eng. Mech. ASCE 126, 27–34 (2000)

    Article  Google Scholar 

  10. Huu-Tai, Thai, Minwo, Park, Dong-Ho, Choi: A simple refined theory for bending, buckling and vibration of thick plates on elastic foundation. Int. J. Mech. Sci. 73, 40–52 (2013)

    Article  Google Scholar 

  11. Dehghan, M., Nejad, M.Z., Moosaie, A.: An effective combination of finite element and differential quadrature method for analyzing of plates partially resting on elastic foundation. Eng. Solid Mech. 4, 201–218 (2016)

    Article  Google Scholar 

  12. Wen, P.H.: The fundamental solution of Mindlin plates resting on an elastic foundation in the Laplace domain and its applications. Int. J. Solids Struct. 45, 1032–1050 (2008)

    Article  MATH  Google Scholar 

  13. Katsikadelis, J.T., Yiotis, A.J.: A new boundary element solution of thick plates modelled by Reissner’s theory. Eng. Anal. Bound. Elem. 12, 65–74 (1993)

    Article  Google Scholar 

  14. Fadhil, S., El-Zafrany, A.: Boundary element analysis of thick Reissner plates on two-parameter foundation. Int. J. Solids Struct. 21, 2901–2917 (1994)

    Article  MATH  Google Scholar 

  15. Providakis, C.P., Beskos, D.E.: Dynamic analysis of plates by boundary elements. Appl. Mech. Rev. ASME 52, 212–236 (1999)

    Article  Google Scholar 

  16. Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N., Soares, C.M.M.: Analysis of plates on Pasternak foundations by radial basis functions. Comput. Mech. 46, 791–803 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Han, J.B., Liew, K.M.: Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter-foundation. Int. J. Mech. Sci. 39, 977–989 (1997)

    Article  MATH  Google Scholar 

  18. Civalek, O., Acar, M.H.: Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int. J. Press. Vessel Pip. 84, 527–535 (2007)

    Article  Google Scholar 

  19. Kansa, E.J.: Highly accurate methods for solving elliptic partial differential equations. In: Brebbia, C.A., Divo, E., Poljak, D. (eds.) Boundary Elements XXVII, pp. 5–15. WIT Press, Southampton (2005)

    Google Scholar 

  20. Katsikadelis, J.T.: The meshless analog equation method. A new highly accurate truly mesh-free method for solving partial differential equations. In: Brebbia, C.A., Katsikadelis, J.T. (eds.) Boundary Elements and Other Mesh Reduction Methods XXVIII, pp. 13–22. WIT Press, Southampton (2006)

    Chapter  Google Scholar 

  21. Katsikadelis, J.T.: A generalized Ritz method for partial differential equations in domains of arbitrary geometry using global shape functions. Eng. Anal. Bound. Elem. 32(5), 353–367 (2008)

    Article  MATH  Google Scholar 

  22. Katsikadelis, J.T.: The 2D elastostatic problem in inhomogeneous anisotropic bodies by the meshless analog equation method MAEM. Eng. Anal. Bound. Elem. 32, 997–1005 (2008)

    Article  MATH  Google Scholar 

  23. Katsikadelis, J.T.: The meshless analog equation method: I. solution of elliptic partial differential equations. Arch. Appl. Mech. 79, 557–578 (2009)

    Article  MATH  Google Scholar 

  24. Yiotis, A.J., Katsikadelis, J.T.: The meshless analog equation method for the solution of plate problems. In: Proceedings of the 6th GRACM International Congress on Computational Mechanics, Thessaloniki, Greece, 19–21 June (2008)

  25. Yiotis, A.J., Katsikadelis, J.T.: Thick plates on biparametric elastic foundation. In: Beskos, D.E., Stavroulakis, G.E. (eds.) Proceedings of the 10th HSTAM International Congress on Mechanics, Abstract p. 189, Full paper CD-ROM, Chania, Crete, Greece, 25–27 May (2013)

  26. Herrmann, G., Armenakas, A.E.: Vibrations and stability of thick plates under initial stress. Trans. ASCE 127, 458–487 (1962)

    Google Scholar 

  27. Brunelle, E.J., Robertson, S.R.: Initially stressed Mindlin plates. AIAA J. 12(8), 1036–1044 (2006)

    Article  MATH  Google Scholar 

  28. Balas, J., Sladek, V., Sladek, J.: The boundary integral equation method for plates resting on a two-parameter foundation. ZAMM 64, 137–146 (1984)

    Article  MATH  Google Scholar 

  29. Katsikadelis, J.T., Kallivokas, L.F.: Plates on biparametric elastic foundation by BDIE method. J. Eng. Mech. 114(5), 847–875 (1988)

    Article  Google Scholar 

  30. Sarra, S.A.: Integrated multiquadric radial basis function methods. Comput. Math. Appl. 5, 1283–1296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yiotis, A.J., Katsikadelis, J.T.: Analysis of cylindrical shell panels. a meshless solution. Eng. Anal. Bound. Elem. 37, 928–935 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huang, C.-S., Lee, C.-F., Cheng, A.H.G.: Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method. Eng. Anal. Bound. Elem. 31, 614–623 (2007)

    Article  MATH  Google Scholar 

  33. Yiotis, A.J., Katsikadelis, J.T.: Buckling of cylindrical shell panels: a MAEM solution. Arch. Appl. Mech. 85(9), 1545–1557 (2015)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristophanes J. Yiotis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiotis, A.J., Katsikadelis, J.T. Buckling analysis of thick plates on biparametric elastic foundation: a MAEM solution. Arch Appl Mech 88, 83–95 (2018). https://doi.org/10.1007/s00419-017-1269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1269-2

Keywords

Navigation