Skip to main content
Log in

Three-dimensional nonlinear planar dynamics of an axially moving Timoshenko beam

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The three-dimensional nonlinear planar dynamics of an axially moving Timoshenko beam is investigated in this paper by means of two numerical techniques. The equations of motion for the longitudinal, transverse, and rotational motions are derived using constitutive relations and via Hamilton’s principle. The Galerkin method is employed to discretize the three partial differential equations of motion, yielding a set of nonlinear ordinary differential equations with coupled terms. This set is solved using the pseudo-arclength continuation technique so as to plot frequency-response curves of the system for different cases. Bifurcation diagrams of Poincaré maps for the system near the first instability are obtained via direct time integration of the discretized equations. Time histories, phase-plane portraits, and fast Fourier transforms are presented for some system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Simpson A.: Transverse modes and frequencies of beams translating between fixed end supports. J. Mech. Eng. Sci. 15, 159–164 (1973)

    Article  Google Scholar 

  2. Mote C.D. Jr.: Dynamic stability of axially moving materials. Shock Vib. Digest 4(4), 2–11 (1972)

    Article  Google Scholar 

  3. Wickert J.A., Mote C.D. Jr.: Current research on the vibration and stability of moving materials. Shock Vib. Digest 20, 3–13 (1988)

    Article  Google Scholar 

  4. Wickert J.A., Mote C.D. Jr.: Classical vibration analysis of axially moving continua. J. Appl. Mech. 57(3), 738–744 (1990)

    Article  MATH  Google Scholar 

  5. Pakdemirli H.R., Pakdemirli M.: Vibrations of an axially moving beam with time-dependent velocity. J. Sound Vib. 227(2), 239–257 (1999)

    Article  Google Scholar 

  6. Pakdemirli H.R., Pakdemirli M., Boyaci H.: Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. Int. J. Non-Linear Mech. 30(1), 107–115 (2001)

    Article  Google Scholar 

  7. Pakdemirli M., H.R.: Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations. J. Sound Vib. 311(3–5), 1052–1074 (2008)

    Article  Google Scholar 

  8. Wang B., Chen L.-Q.: Asymptotic stability analysis with numerical confirmation of an axially accelerating beam constituted by the standard linear solid model. J. Sound Vib. 328(4–5), 456–466 (2009)

    Article  Google Scholar 

  9. Chen L.-Q., Tang Y.-Q.: Combination and principal parametric resonances of axially accelerating viscoelastic beams: Recognition of longitudinally varying tensions. J. Sound Vib. 330(23), 5598–5614 (2011)

    Article  Google Scholar 

  10. Marynowski K.: Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension. Chaos Solitons Fractals 21(2), 481–490 (2004)

    Article  MATH  Google Scholar 

  11. Marynowski K., Kapitaniak T.: Zener internal damping in modelling of axially moving viscoelastic beam with time-dependent tension. Int. J. Non-Linear Mech. 42(1), 118–131 (2007)

    Article  MATH  Google Scholar 

  12. Brake, M.R., Wickert, J.A.: Frictional vibration transmission from a laterally moving surface to a traveling beam. J. Sound Vib. 310(3), 663–675 (2008)

    Article  Google Scholar 

  13. Suweken G., Van Horssen W.T.: On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part II: the beam-like case. J. Sound Vib. 267(5), 1007–1027 (2003)

    Article  Google Scholar 

  14. Ponomareva S.V., Van Horssen W.T.: On the transversal vibrations of an axially moving continuum with a time-varying velocity: Transient from string to beam behavior. J. Sound Vib. 325(4–5), 959–973 (2009)

    Article  Google Scholar 

  15. Huang J.L., Su R.K.L., Li W.H., Chen S.H.: Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J. Sound Vib. 330(3), 471–485 (2011)

    Article  Google Scholar 

  16. Riedel C.H., Tan C.A.: Coupled, forced response of an axially moving strip with internal resonance. Int. J. Non-Linear Mech. 37(1), 101–116 (2002)

    Article  MATH  Google Scholar 

  17. Zhu W.D., Chen Y.: Theoretical and experimental investigation of elevator cable dynamics and control. J. Vib. Acoust. 128(1), 66–78 (2006)

    Article  Google Scholar 

  18. Ghayesh M.H., Yourdkhani M., Balar S., Reid T.: Vibrations and stability of axially traveling laminated beams. Appl. Math. Comput. 217(2), 545–556 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ghayesh M.H.: On the natural frequencies, complex mode functions, and critical speeds of axially traveling laminated beams: parametric study. Acta Mechanica Solida Sinica 24(4), 373–382 (2011)

    Google Scholar 

  20. Ghayesh M.H.: Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance. Int. J. Mech. Sci. 53(11), 1022–1037 (2011)

    Article  Google Scholar 

  21. Ghayesh M.H., Kafiabad H.A., Reid T.: Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam. Int. J. Solids Struct. 49(1), 227–243 (2012)

    Article  Google Scholar 

  22. Ghayesh M.H., Kazemirad S., Amabili M.: Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance. Mech. Mach. Theory 52, 18–34 (2012)

    Article  Google Scholar 

  23. Ghayesh, M.H.: Subharmonic dynamics of an axially accelerating beam. Archive Appl. Mech. 82, 1169–1181 (2012)

    Google Scholar 

  24. Kazemirad, S., Ghayesh, M.H., Amabili, M.: Thermo-mechanical nonlinear dynamics of a buckled axially moving beam. Archive Appl. Mech. (2012). doi:10.1007/s00419-012-0630-8

  25. Lee U., Kim J., Oh H.: Spectral analysis for the transverse vibration of an axially moving Timoshenko beam. J. Sound Vib. 271(3–5), 685–703 (2004)

    Article  MATH  Google Scholar 

  26. Tang Y.-Q., Chen L.-Q., Yang X.-D.: Nonlinear vibrations of axially moving Timoshenko beams under weak and strong external excitations. J. Sound Vib. 320(4–5), 1078–1099 (2009)

    Article  Google Scholar 

  27. Tang Y.-Q., Chen L.-Q., Yang X.-D.: Parametric resonance of axially moving Timoshenko beams with time-dependent speed. Nonlinear Dyn. 58(4), 715–724 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yang X.-D., Tang Y.-Q., Chen L.-Q., Lim C.W.: Dynamic stability of axially accelerating Timoshenko beam: averaging method. Eur. J. Mech. A/Solids 29(1), 81–90 (2010)

    Article  MathSciNet  Google Scholar 

  29. Ghayesh M.H., Balar S.: Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams. Appl. Math. Model. 34(10), 2850–2859 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Amabili M., Farhadi S.: Shear deformable versus classical theories for nonlinear vibrations of rectangular isotropic and laminated composite plates. J. Sound Vib. 320(3), 649–667 (2009)

    Article  Google Scholar 

  31. Doedel E.J., Champneys A.R., Fairgrieve T.F., Kuznetsov Y.A., Sandstede B., Wang X.: AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont). Concordia University, Montreal, Canada (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghayesh, M.H., Amabili, M. Three-dimensional nonlinear planar dynamics of an axially moving Timoshenko beam. Arch Appl Mech 83, 591–604 (2013). https://doi.org/10.1007/s00419-012-0706-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0706-5

Keywords

Navigation