Skip to main content
Log in

Polarization of excitation light influences molecule counting in single-molecule localization microscopy

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Single-molecule localization microscopy has been widely applied to count the number of biological molecules within a certain structure. The percentage of molecules that are detected significantly affects the interpretation of data. Among many factors that affect this percentage, the polarization state of the excitation light is often neglected or at least unstated in publications. We demonstrate by simulation and experiment that the number of molecules detected can be different from −40 up to 100 % when using circularly or linearly polarized excitation light. This is determined mainly by the number of photons emitted by single fluorescent molecule, namely the choice of fluorescence proteins, and the background noise in the system, namely the illumination scheme. This difference can be further exaggerated or mitigated by various fixation methods, magnification, and camera settings We conclude that the final choice between circularly or linearly polarized excitation light should be made experimentally, based on the signal to noise ratio of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Annibale P, Scarselli M, Greco M, Radenovic A (2012) Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy. Optical Nanoscopy 1(1):9

    Article  Google Scholar 

  • Backlund MP, Lew MD, Backer AS, Sahl SJ, Moerner WE (2014) The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging. Chem Phys Chem 15(4):587–599

    CAS  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, CUP Archive

  • Coffman VC, Wu JQ (2012) Counting protein molecules using quantitative fluorescence microscopy. Trends Biochem Sci 37(11):499–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corrie JE, Craik JS, Munasinghe VR (1998) A homobifunctional rhodamine for labeling proteins with defined orientations of a fluorophore. Bioconjug Chem 9(2):160–167

    Article  CAS  PubMed  Google Scholar 

  • Deschout H, Shivanandan A, Annibale P, Scarselli M, Radenovic A (2014a) Progress in quantitative single-molecule localization microscopy. Histochem Cell Biol 142(1):5–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deschout H, Zanacchi F, Mlodzianoski M, Diaspro A, Bewersdorf J, Hess S, Braeckmans K (2014b) Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods 11(3):253–266

    Article  CAS  PubMed  Google Scholar 

  • Durisic N, Laparra-Cuervo L, Sandoval-Álvarez A, Borbely J, Lakadamyali M (2014) Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat Methods 11(2):156–162

  • Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, Andresen M, Stiel AC, Jakobs S, Eggeling C, Schonle A, Hell SW (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93(9):3285–3290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engelhardt J, Keller J, Hoyer P, Reuss M, Staudt T, Hell SW (2011) Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. Nano Lett 11(1):209–213

    Article  CAS  PubMed  Google Scholar 

  • Flors C, Hotta J, Uji-i H, Dedecker P, Ando R, Mizuno H, Miyawaki A, Hofkens J (2007) A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. J Am Chem Soc 129(45):13970–13977

    Article  CAS  PubMed  Google Scholar 

  • Fricke F, Malkusch S, Wangorsch G, Greiner J, Kaltschmidt B, Kaltschmidt C, Widera D, Dandekar T, Heilemann M (2014) Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers. Histochem Cell Biol 142(1):91–101

  • Ganguly S, Clayton AH, Chattopadhyay A (2011) Fixation alters fluorescence lifetime and anisotropy of cells expressing EYFP-tagged serotonin1A receptor. Biochem Biophys Res Commun 405(2):234–237

    Article  CAS  PubMed  Google Scholar 

  • Gould TJ, Gunewardene MS, Gudheti MV, Verkhusha VV, Yin SR, Gosse JA, Hess ST (2008) Nanoscale imaging of molecular positions and anisotropies. Nat Methods 5(12):1027–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haynes NM, Smyth MJ, Kershaw MH, Trapani JA, Darcy PK (1999) Fas-ligand-mediated lysis of erbB-2-expressing tumour cells by redirected cytotoxic T lymphocytes. Cancer Immunol Immunother 47(5):278–286

    Article  CAS  PubMed  Google Scholar 

  • Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340

    Article  CAS  PubMed  Google Scholar 

  • Henriques R, Griffiths C, Hesper Rego E, Mhlanga MM (2011) PALM and STORM: unlocking live-cell super-resolution. Biopolymers 95(5):322–331

    Article  CAS  PubMed  Google Scholar 

  • Klein T, Proppert S, Sauer M (2014) Eight years of single-molecule localization microscopy. Histochem Cell Biol 141(6):561–575

  • Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, McColl J, Klenerman D, Carr AM, Sauer M, Allshire RC, Heilemann M, Laue ED (2012) Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol 2(7):120078

    Article  PubMed Central  PubMed  Google Scholar 

  • Lew MD, Backlund MP, Moerner WE (2013) Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy. Nano Lett 13(9):3967–3972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lieb MA, Zavislan JM, Novotny L (2004) Single-molecule orientations determined by direct emission pattern imaging. J Opt Soc Am B 21(6):1210–1215

    Article  CAS  Google Scholar 

  • Nair D, Hosy E, Petersen JD, Constals A, Giannone G, Choquet D, Sibarita JB (2013) Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci 33(32):13204–13224

    Article  CAS  PubMed  Google Scholar 

  • Ober RJ, Ram S, Ward ES (2004) Localization accuracy in single-molecule microscopy. Biophys J 86(2):1185–1200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Owen DM, Williamson DJ, Magenau A, Gaus K (2012) Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat Commun 3:1256

    Article  PubMed  Google Scholar 

  • Pavani SR, DeLuca JG, Piestun R (2009) Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system. Opt Express 17(22):19644–19655

    Article  CAS  PubMed  Google Scholar 

  • Puchner E, Walter J, Kasper R, Huang B, Lim W (2013) Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proceedings of the National Academy of Sciences of the United States of America

  • Rinnerthaler G, Geiger B, Small JV (1988) Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules. J Cell Biol 106(3):747–760

    Article  CAS  PubMed  Google Scholar 

  • Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A 104(51):20308–20313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sosa H, Asenjo AB, Peterman EJ (2010) Structure and dynamics of the kinesin-microtubule interaction revealed by fluorescence polarization microscopy. Methods Cell Biol 95:505–519

    Article  CAS  PubMed  Google Scholar 

  • Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV (2010) Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132(18):6481–6491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Subach OM, Patterson GH, Ting LM, Wang Y, Condeelis JS, Verkhusha VV (2011) A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nat Methods 8(9):771–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaughan JC, Jia S, Zhuang X (2012) Ultrabright photoactivatable fluorophores created by reductive caging. Nat Methods 9(12):1181–1184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ, Gaus K (2011) Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 12(7):655–662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by project grants and a fellowship from the National Health and Medical Research Foundation of Australia to SMR, and Australian Research Council Laureate Fellowship to MG and Future Fellowship to SMR. We thank Katharina Gaus for technical assistance and the pLifeAct-mEos2 construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah M. Russell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Lin, H., Ludford-Menting, M.J. et al. Polarization of excitation light influences molecule counting in single-molecule localization microscopy. Histochem Cell Biol 143, 11–19 (2015). https://doi.org/10.1007/s00418-014-1267-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1267-1

Keywords

Navigation