Skip to main content

Advertisement

Log in

Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Epithelial–mesenchymal transition (EMT) is regulated by interaction of carcinoma and stromal cells and crucial for progression of urinary bladder carcinoma (UBC). Therefore, the influence of activated fibroblasts on the expression of E-cadherin repressors as well as EMT and invasion in UBC was investigated. A correlative analysis of the immunohistochemical expression of fibroblast (ASMA, S100A4, FAP, SDF1, PDGFRβ) and EMT (Snail, Slug, Zeb1, E-cadherin) markers was performed on 49 UBC cases of different stages. The impact of distinguishable growth factor stimulated fibroblasts on invasion, EMT, and E-cadherin repressor expression was investigated in an invasion model. In situ, invasiveness was significantly correlated to the loss of membranous E-cadherin (E-cad_m) and increased Snail, Slug, Zeb1 in tumour cells, as well as to increased ASMA, S100A4, and PDGFRβ in stromal cells. A significant correlation to nodal metastasis could be evidenced for the loss of E-Cad_m, and for an increase in S100A4 and PDGFRβ. Comparison of stromal and EMT markers revealed significant correlations of ASMA to Snail and Slug; of S100A4 to the loss of E-cad_m and Zeb1; and of PDGFRβ to the loss of E-Cad_m, Slug and Zeb1. In vitro, TGFβ1 induced myofibroblasts were the strongest attractants, while aFGF or TGFβ1/aFGF stimulated fibroblasts were the most potent EMT inductors. As shown here for the first time, distinct sub-populations of fibroblasts are to various extents associated with EMT and tumour progression in UBC. These relevant findings might be the basis for the identification of new diagnostic markers and therapeutic targets selectively affecting tumour supporting CAF effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    Article  PubMed  CAS  Google Scholar 

  • Baumgart E, Cohen MS, Silva Neto B, Jacobs MA, Wotkowicz C, Rieger-Christ KM, Biolo A, Zeheb R, Loda M, Libertino JA, Summerhayes IC (2007) Identification and prognostic significance of an epithelial–mesenchymal transition expression profile in human bladder tumors. Clin Cancer Res 13:1685–1694

    Article  PubMed  CAS  Google Scholar 

  • Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    Article  PubMed  CAS  Google Scholar 

  • Boyer B, Tucker GC, Valles AM, Franke WW, Thiery JP (1989) Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. J Cell Biol 109:1495–1509

    Article  PubMed  CAS  Google Scholar 

  • Bryan RT, Tselepis C (2010) Cadherin switching and bladder cancer. J Urol 184:423–431

    Article  PubMed  CAS  Google Scholar 

  • Bryan RT, Atherfold PA, Yeo Y, Jones LJ, Harrison RF, Wallace DM, Jankowski JA (2008) Cadherin switching dictates the biology of transitional cell carcinoma of the bladder: ex vivo and in vitro studies. J Pathol 215:184–194

    Article  PubMed  CAS  Google Scholar 

  • Byrne RR, Shariat SF, Brown R, Kattan MW, Morton RJ, Wheeler TM, Lerner SP (2001) E-cadherin immunostaining of bladder transitional cell carcinoma, carcinoma in situ and lymph node metastases with long-term followup. J Urol 165:1473–1479

    Article  PubMed  CAS  Google Scholar 

  • Cattan N, Rochet N, Mazeau C, Zanghellini E, Mari B, Chauzy C, Stora de Novion H, Amiel J, Lagrange JL, Rossi B, Gioanni J (2001) Establishment of two new human bladder carcinoma cell lines, CAL 29 and CAL 185. Comparative study of cell scattering and epithelial to mesenchyme transition induced by growth factors. Br J Cancer 85:1412–1417

    Article  PubMed  CAS  Google Scholar 

  • Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, Chi JT, van de Rijn M, Botstein D, Brown PO (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7

    Article  PubMed  Google Scholar 

  • Chiarugi P, Cirri P, Taddei ML, Talini D, Doria L, Fiaschi T, Buricchi F, Giannoni E, Camici G, Raugei G, Ramponi G (2002) New perspectives in PDGF receptor downregulation: the main role of phosphotyrosine phosphatases. J Cell Sci 115:2219–2232

    PubMed  CAS  Google Scholar 

  • Davies G, Jiang WG, Mason MD (1999) Cell-cell adhesion molecules and their associated proteins in bladder cancer cells and their role in mitogen induced cell-cell dissociation and invasion. Anticancer Res 19:547–552

    PubMed  CAS  Google Scholar 

  • De Wever O, Mareel M (2002) Role of myofibroblasts at the invasion front. Biol Chem 383:55–67

    Article  PubMed  Google Scholar 

  • Dietrich C, Wallenfang K, Oesch F, Wieser R (1997) Translocation of cdk2 to the nucleus during G1-phase in PDGF-stimulated human fibroblasts. Exp Cell Res 232:72–78

    Article  PubMed  CAS  Google Scholar 

  • Eble JN, Sauter G, Epstein JE, Sesterhenn IA (2004) World Health Organization Classification of tumours, pathology and genetics of male genital organs. IARC Press, Lyon

    Google Scholar 

  • Franco OE, Jiang M, Strand DW, Peacock J, Fernandez S, Jackson RS 2nd, Revelo MP, Bhowmick NA, Hayward SW (2011) Altered TGF-beta signaling in a subpopulation of human stromal cells promotes prostatic carcinogenesis. Cancer Res 71:1272–1281

    Article  PubMed  CAS  Google Scholar 

  • Franz M, Spiegel K, Umbreit C, Richter P, Codina-Canet C, Berndt A, Altendorf-Hofmann A, Koscielny S, Hyckel P, Kosmehl H, Virtanen I (2009) Expression of Snail is associated with myofibroblast phenotype development in oral squamous cell carcinoma. Histochem Cell Biol 131:651–660

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama C, Jones A, Fuggle S, Bicknell R, Cranston D, Harris AL (2001) Human bladder cancer invasion model using rat bladder in vitro and its use to test mechanisms and therapeutic inhibitors of invasion. Br J Cancer 84:558–564

    Article  PubMed  CAS  Google Scholar 

  • Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S (2005) Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129:1375–1383

    Article  PubMed  CAS  Google Scholar 

  • Hagglof C, Hammarsten P, Josefsson A, Stattin P, Paulsson J, Bergh A, Ostman A (2010) Stromal PDGFRbeta expression in prostate tumors and non-malignant prostate tissue predicts prostate cancer survival. PLoS One 5:e10747

    Article  PubMed  Google Scholar 

  • Henriksson ML, Edin S, Dahlin AM, Oldenborg PA, Oberg A, Van Guelpen B, Rutegard J, Stenling R, Palmqvist R (2011) Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. Am J Pathol 178:1387–1394

    Article  PubMed  Google Scholar 

  • Hu X, Ruan Y, Cheng F, Yu W, Zhang X, Larre S (2011) p130Cas, E-cadherin and beta-catenin in human transitional cell carcinoma of the bladder: expression and clinicopathological significance. Int J Urol 18:630–637

    PubMed  Google Scholar 

  • Hung SC, Kuo PY, Chang CF, Chen TH, Ho LL (2006) Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells. Cell Tissue Res 324:457–466

    Article  PubMed  CAS  Google Scholar 

  • Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350

    PubMed  CAS  Google Scholar 

  • Jost L (2003) Das Urothelkarzinom. Schweiz Med Forum 25:585–591

    Google Scholar 

  • Jouppila-Matto A, Tuhkanen H, Soini Y, Pukkila M, Narkio-Makela M, Sironen R, Virtanen I, Mannermaa A, Kosma VM (2011) Transcription factor snail1 expression and poor survival in pharyngeal squamous cell carcinoma. Histol Histopathol 26:443–449

    PubMed  Google Scholar 

  • Kenney PA, Wszolek MF, Rieger-Christ KM, Neto BS, Gould JJ, Harty NJ, Mosquera JM, Zeheb R, Loda M, Darling DS, Libertino JA, Summerhayes IC (2011) Novel ZEB1 expression in bladder tumorigenesis. BJU Int 107:656–663

    Article  PubMed  Google Scholar 

  • Lascombe I, Clairotte A, Fauconnet S, Bernardini S, Wallerand H, Kantelip B, Bittard H (2006) N-cadherin as a novel prognostic marker of progression in superficial urothelial tumors. Clin Cancer Res 12:2780–2787

    Article  PubMed  CAS  Google Scholar 

  • Lim MG, Adsay NV, Grignon DJ, Osunkoya AO (2011) E-cadherin expression in plasmacytoid, signet ring cell and micropapillary variants of urothelial carcinoma: comparison with usual-type high-grade urothelial carcinoma. Mod Pathol 24:241–247

    Article  PubMed  CAS  Google Scholar 

  • Marsh D, Suchak K, Moutasim KA, Vallath S, Hopper C, Jerjes W, Upile T, Kalavrezos N, Violette SM, Weinreb PH, Chester KA, Chana JS, Marshall JF, Hart IR, Hackshaw AK, Piper K, Thomas GJ (2010) Stromal features are predictive of disease mortality in oral cancer patients. J Pathol 223:470–481

    Article  Google Scholar 

  • Matsumoto K, Irie A, Satoh T, Ishii J, Iwabuchi K, Iwamura M, Egawa S, Baba S (2007) Expression of S100A2 and S100A4 predicts for disease progression and patient survival in bladder cancer. Urology 70:602–607

    Article  PubMed  Google Scholar 

  • McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, Svatek R, Das A, Adam L, Kamat A, Siefker-Radtke A, Dinney C (2009) Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 28:335–344

    Article  PubMed  CAS  Google Scholar 

  • Mighell AJ, Thompson J, Hume WJ, Markham AF, Robinson PA (1997) RT-PCR investigation of fibronectin mRNA isoforms in malignant, normal and reactive oral mucosa. Oral Oncol 33:155–162

    Article  PubMed  CAS  Google Scholar 

  • Nimphius W, Moll R, Olbert P, Ramaswamy A, Barth PJ (2007) CD34+ fibrocytes in chronic cystitis and noninvasive and invasive urothelial carcinomas of the urinary bladder. Virchows Arch 450:179–185

    Article  PubMed  CAS  Google Scholar 

  • Östman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr Opin Genet Dev 19:67–73

    Article  PubMed  Google Scholar 

  • Paulsson J, Sjoblom T, Micke P, Ponten F, Landberg G, Heldin CH, Bergh J, Brennan DJ, Jirstrom K, Ostman A (2009) Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am J Pathol 175:334–341

    Article  PubMed  Google Scholar 

  • Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P (1999) TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 112(Pt 24):4557–4568

    PubMed  CAS  Google Scholar 

  • Rajkumar VS, Shiwen X, Bostrom M, Leoni P, Muddle J, Ivarsson M, Gerdin B, Denton CP, Bou-Gharios G, Black CM, Abraham DJ (2006) Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 169:2254–2265

    Article  PubMed  CAS  Google Scholar 

  • Ramos C, Montano M, Becerril C, Cisneros-Lira J, Barrera L, Ruiz V, Pardo A, Selman M (2006) Acidic fibroblast growth factor decreases alpha-smooth muscle actin expression and induces apoptosis in human normal lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 291:L871–L879

    Article  PubMed  CAS  Google Scholar 

  • Ramos C, Becerril C, Montano M, Garcia-De-Alba C, Ramirez R, Checa M, Pardo A, Selman M (2010) FGF-1 reverts epithelial–mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway. Am J Physiol Lung Cell Mol Physiol 299:L222–L231

    Article  PubMed  CAS  Google Scholar 

  • Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95:859–873

    Article  PubMed  CAS  Google Scholar 

  • Rowe RG, Li XY, Hu Y, Saunders TL, Virtanen I, Garcia de Herreros A, Becker KF, Ingvarsen S, Engelholm LH, Bommer GT, Fearon ER, Weiss SJ (2009) Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J Cell Biol 184:399–408

    Article  PubMed  CAS  Google Scholar 

  • Sayan AE, Griffiths TR, Pal R, Browne GJ, Ruddick A, Yagci T, Edwards R, Mayer NJ, Qazi H, Goyal S, Fernandez S, Straatman K, Jones GD, Bowman KJ, Colquhoun A, Mellon JK, Kriajevska M, Tulchinsky E (2009) SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proc Natl Acad Sci USA 106:14884–14889

    Article  PubMed  CAS  Google Scholar 

  • Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881

    Article  PubMed  CAS  Google Scholar 

  • Shi B, Laudon V, Yu S, Dong D, Zhu Y, Xu Z (2008) E-cadherin tissue expression and urinary soluble forms of E-cadherin in patients with bladder transitional cell carcinoma. Urol Int 81:320–324

    Article  PubMed  CAS  Google Scholar 

  • Shimasaki N, Kuroda N, Miyazaki E, Hayashi Y, Toi M, Hiroi M, Enzan H, Shuin T (2006) The distribution pattern of myofibroblasts in the stroma of human bladder carcinoma depends on their invasiveness. Histol Histopathol 21:349–353

    PubMed  CAS  Google Scholar 

  • Shirakihara T, Horiguchi K, Miyazawa K, Ehata S, Shibata T, Morita I, Miyazono K, Saitoh M (2011) TGF-beta regulates isoform switching of FGF receptors and epithelial–mesenchymal transition. EMBO J 30:783–795

    Article  PubMed  CAS  Google Scholar 

  • Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto H, Mundel TM, Kieran MW, Kalluri R (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5:1640–1646

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Herrera GA (2004) E-cadherin expression in invasive urothelial carcinoma. Ann Diagn Pathol 8:17–22

    Article  PubMed  Google Scholar 

  • Thannickal VJ, Aldweib KD, Rajan T, Fanburg BL (1998) Upregulated expression of fibroblast growth factor (FGF) receptors by transforming growth factor-beta1 (TGF-beta1) mediates enhanced mitogenic responses to FGFs in cultured human lung fibroblasts. Biochem Biophys Res Commun 251:437–441

    Article  PubMed  CAS  Google Scholar 

  • van Zijl F, Mair M, Csiszar A, Schneller D, Zulehner G, Huber H, Eferl R, Beug H, Dolznig H, Mikulits W (2009) Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene 28:4022–4033

    Article  PubMed  Google Scholar 

  • Wallerand H, Cai Y, Wainberg ZA, Garraway I, Lascombe I, Nicolle G, Thiery JP, Bittard H, Radvanyi F, Reiter RR (2010) Phospho-Akt pathway activation and inhibition depends on N-cadherin or phospho-EGFR expression in invasive human bladder cancer cell lines. Urol Oncol 28:180–188

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhang K, Sun L, Liu J, Lu H (2010) Short interfering RNA directed against Slug blocks tumor growth, metastasis formation, and vascular leakage in bladder cancer. Med Oncol 28(Suppl 1):413–422

    CAS  Google Scholar 

  • Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, Hansen TB, Villadsen SB, Gao S, Ostenfeld MS, Borre M, Peter ME, Orntoft TF, Kjems J, Clark SJ (2011) Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 128:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713–725

    Article  PubMed  CAS  Google Scholar 

  • Yamashita M, Ogawa T, Zhang X, Hanamura N, Kashikura Y, Takamura M, Yoneda M, Shiraishi T (2010) Role of stromal myofibroblasts in invasive breast cancer: stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer 19:170–176

    Article  PubMed  Google Scholar 

  • Yang Z, Zhang X, Gang H, Li X, Li Z, Wang T, Han J, Luo T, Wen F, Wu X (2007) Up-regulation of gastric cancer cell invasion by Twist is accompanied by N-cadherin and fibronectin expression. Biochem Biophys Res Commun 358:925–930

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Zhang K, Wang X, Liu X, Zhang Z (2010) Expression of transcription factors snail, slug, and twist in human bladder carcinoma. J Exp Clin Cancer Res 29:119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Claudia Seliger for excellent technical assistance. The research leading to the results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant agreement No. Health-F2-2008-201342 (ADAMANT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Franz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulte, J., Weidig, M., Balzer, P. et al. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells. Histochem Cell Biol 138, 847–860 (2012). https://doi.org/10.1007/s00418-012-0998-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0998-0

Keywords

Navigation