Skip to main content

Advertisement

Log in

Choriocapillaris layer imaging with swept-source optical coherence tomography angiography in lamellar and full-thickness macular hole

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To present characteristics of choriocapillaris layer imaging with swept-source optical coherence tomography angiography (SS-OCTA) in eyes with macular hole (MH).

Methods

Patients with MH were included. Vascular density of choriocapillaris (VDC) and central flow void areas were obtained using SS-OCTA. Data were compared with age- and gender-matched normal controls.

Results

Fifty-one patients with MH and 51 controls were included. Among the 51 patients with MH, 19 had lamellar MH (LMH) and 32 had full-thickness MH (FTMH). While VDC in LMH (79.26 ± 4.06%) was not significantly different from that seen in fellow eyes (79.88 ± 4.28%, P = 0.729) and normal controls (80.53 ± 4.21%, P = 1.000), VDC in surgically closed FTMH (74.60 ± 7.37%) was similar to that of fellow eyes (75.45 ± 7.39%, P = 0.400) but lower than that of controls (78.37 ± 7.13%, P = 0.011). On univariate analysis of 32 patients with unilateral sealed FTMH, VDC was not correlated with basal hole area (P = 0.797) or preoperative area of disrupted ellipsoid zone (P = 0.863). Central flow void was detected in 32 eyes. Mean central flow void area was 0.82 ± 0.84 mm2, which correlated with preoperative area of disrupted ellipsoid zone (P = 0.001).

Conclusions

Choriocapillaris layer imaging using SS-OCTA showed that choriocapillaris in both eyes of patients with unilateral FTMH had different characteristics from eyes with LMH or normal controls. These results suggest that variation in choriocapillaris layer flow is involved in the pathogenesis of MH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ho AC, Guyer DR, Fine SL (1998) Macular hole. Surv Ophthalmol 42:393–416

    Article  CAS  PubMed  Google Scholar 

  2. Smiddy WE, Flynn HW Jr (2004) Pathogenesis of macular holes and therapeutic implications. Am J Ophthalmol 137:525–537. https://doi.org/10.1016/j.ajo.2003.12.011

    Article  CAS  PubMed  Google Scholar 

  3. McDonnell PJ, Fine SL, Hillis AI (1982) Clinical features of idiopathic macular cysts and holes. Am J Ophthalmol 93:777–786

    Article  CAS  PubMed  Google Scholar 

  4. Haouchine B, Massin P, Gaudric A (2001) Foveal pseudocyst as the first step in macular hole formation: a prospective study by optical coherence tomography. Ophthalmology 108:15–22

    Article  CAS  PubMed  Google Scholar 

  5. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500. https://doi.org/10.1016/j.ajo.2008.05.032

    Article  PubMed  Google Scholar 

  6. Zhang P, Zhou M, Wu Y, Lu B, Li T, Zhao J, Wang F, Sun X (2017) Choroidal thickness in unilateral idiopathic macular hole: a cross-sectional study and meta-analysis. Retina 37:60–69. https://doi.org/10.1097/iae.0000000000001118

    Article  PubMed  Google Scholar 

  7. Zeng J, Li J, Liu R, Chen X, Pan J, Tang S, Ding X (2012) Choroidal thickness in both eyes of patients with unilateral idiopathic macular hole. Ophthalmology 119:2328–2333. https://doi.org/10.1016/j.ophtha.2012.06.008

    Article  PubMed  Google Scholar 

  8. Reibaldi M, Boscia F, Avitabile T, Uva MG, Russo V, Zagari M, Bonfiglio V, Reibaldi A, Longo A (2011) Enhanced depth imaging optical coherence tomography of the choroid in idiopathic macular hole: a cross-sectional prospective study. Am J Ophthalmol 151:112–117.e112. https://doi.org/10.1016/j.ajo.2010.07.004

    Article  PubMed  Google Scholar 

  9. Huang Y, Zhang Q, Thorell MR, An L, Durbin MK, Laron M, Sharma U, Gregori G, Rosenfeld PJ, Wang RK (2014) Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina 45:382–389. https://doi.org/10.3928/23258160-20140909-08

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lane M, Moult EM, Novais EA, Louzada RN, Cole ED, Lee B, Husvogt L, Keane PA, Denniston AK, Witkin AJ, Baumal CR, Fujimoto JG, Duker JS, Waheed NK (2016) Visualizing the choriocapillaris under drusen: comparing 1050-nm swept-source versus 840-nm spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT585–OCT590. https://doi.org/10.1167/iovs.15-18915

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moult EM, Waheed NK, Novais EA, Choi W, Lee B, Ploner SB, Cole ED, Louzada RN, Lu CD, Rosenfeld PJ, Duker JS, Fujimoto JG (2016) Swept-source optical coherence tomotraphy angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy. Retina 36(Suppl 1):S2–s11. https://doi.org/10.1097/iae.0000000000001287

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yannuzzi NA, Swaminathan SS, Zheng F, Miller A, Gregori G, Davis JL, Rosenfeld PJ (2017) Swept-source OCT angiography shows sparing of the choriocapillaris in multiple evanescent white dot syndrome. Ophthalmic Surg Lasers Imaging Retina 48:69–74. https://doi.org/10.3928/23258160-20161219-10

    Article  PubMed  Google Scholar 

  13. Moult E, Choi W, Waheed NK, Adhi M, Lee B, Lu CD, Jayaraman V, Potsaid B, Rosenfeld PJ, Duker JS, Fujimoto JG (2014) Ultrahigh-speed swept-source OCT angiography in exudative AMD. Ophthalmic Surg Lasers Imaging Retina 45:496–505. https://doi.org/10.3928/23258160-20141118-03

    Article  PubMed  PubMed Central  Google Scholar 

  14. Choi W, Moult EM, Waheed NK, Adhi M, Lee B, Lu CD, de Carlo TE, Jayaraman V, Rosenfeld PJ, Duker JS, Fujimoto JG (2015) Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmology 122:2532–2544. https://doi.org/10.1016/j.ophtha.2015.08.029

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zampedri E, Romanelli F, Semeraro F, Parolini B, Frisina R (2017) Spectral-domain optical coherence tomography findings in idiopathic lamellar macular hole. Graefes Arch Clin Exp Ophthalmol 255:699–707. https://doi.org/10.1007/s00417-016-3545-1

    Article  PubMed  Google Scholar 

  16. Takahashi H, Kishi S (2000) Tomographic features of a lamellar macular hole formation and a lamellar hole that progressed to a full-thickness macular hole. Am J Ophthalmol 130:677–679

    Article  CAS  PubMed  Google Scholar 

  17. Haouchine B, Massin P, Tadayoni R, Erginay A, Gaudric A (2004) Diagnosis of macular pseudoholes and lamellar macular holes by optical coherence tomography. Am J Ophthalmol 138:732–739. https://doi.org/10.1016/j.ajo.2004.06.088

    Article  PubMed  Google Scholar 

  18. Michalewska Z, Michalewski J, Cisiecki S, Adelman R, Nawrocki J (2008) Correlation between foveal structure and visual outcome following macular hole surgery: a spectral optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol 246:823–830. https://doi.org/10.1007/s00417-007-0764-5

    Article  PubMed  Google Scholar 

  19. Theodossiadis PG, Grigoropoulos VG, Theodossiadis GP (2011) The significance of the external limiting membrane in the recovery of photoreceptor layer after successful macular hole closure: a study by spectral domain optical coherence tomography. Ophthalmologica 225:176–184. https://doi.org/10.1159/000323322

    Article  PubMed  Google Scholar 

  20. Gherghel D, Orgul S, Gugleta K, Gekkieva M, Flammer J (2000) Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol 130:597–605

    Article  CAS  PubMed  Google Scholar 

  21. Copete S, Flores-Moreno I, Montero JA, Duker JS, Ruiz-Moreno JM (2014) Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol 98:334–338. https://doi.org/10.1136/bjophthalmol-2013-303904

    Article  PubMed  Google Scholar 

  22. Adhi M, Liu JJ, Qavi AH, Grulkowski I, Lu CD, Mohler KJ, Ferrara D, Kraus MF, Baumal CR, Witkin AJ, Waheed NK, Hornegger J, Fujimoto JG, Duker JS (2014) Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol 157:1272–1281.e1271. https://doi.org/10.1016/j.ajo.2014.02.034

    Article  PubMed  Google Scholar 

  23. Teng Y, Yu M, Wang Y, Liu X, You Q, Liu W (2017) OCT angiography quantifying choriocapillary circulation in idiopathic macular hole before and after surgery. Graefes Arch Clin Exp Ophthalmol 255:893–902. https://doi.org/10.1007/s00417-017-3586-0

    Article  PubMed  Google Scholar 

  24. Rymer J, Wildsoet CF (2005) The role of the retinal pigment epithelium in eye growth regulation and myopia: a review. Vis Neurosci 22:251–261. https://doi.org/10.1017/s0952523805223015

    Article  PubMed  Google Scholar 

  25. Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29:144–168. https://doi.org/10.1016/j.preteyeres.2009.12.002

    Article  PubMed  Google Scholar 

  26. Fryczkowski AW (1994) Anatomical and functional choroidal lobuli. Int Ophthalmol 18:131–141

    Article  CAS  PubMed  Google Scholar 

  27. Lovasik JV, Kergoat H (2012) Systemic determinants. In: Schmetterer L, Kiel JW (eds) Ocular blood flow. Springer, New York, pp 173–210

    Chapter  Google Scholar 

  28. Chen FK, Viljoen RD, Bukowska DM (2016) Classification of image artefacts in optical coherence tomography angiography of the choroid in macular diseases. Clin Exp Ophthalmol 44:388–399. https://doi.org/10.1111/ceo.12683

    Article  PubMed  Google Scholar 

  29. Shinojima A, Kawamura A, Mori R, Fujita K, Yuzawa M (2016) Findings of optical coherence tomographic angiography at the choriocapillaris level in central serous chorioretinopathy. Ophthalmologica 236:108–113. https://doi.org/10.1159/000448436

    Article  PubMed  Google Scholar 

  30. Gass JD (1976) Lamellar macular hole: a complication of cystoid macular edema after cataract extraction. Arch Ophthalmol 94:793–800

    Article  CAS  PubMed  Google Scholar 

  31. Oh JH, Oh J (2015) Moment of cyst eruption captured by optical coherence tomography in diabetic macular edema. Retina 35:1283–1284. https://doi.org/10.1097/iae.0000000000000419

    Article  PubMed  Google Scholar 

  32. Govetto A, Dacquay Y, Farajzadeh M, Platner E, Hirabayashi K, Hosseini H, Schwartz SD, Hubschman JP (2016) Lamellar macular hole: two distinct clinical entities? Am J Ophthalmol 164:99–109. https://doi.org/10.1016/j.ajo.2016.02.008

    Article  PubMed  Google Scholar 

  33. Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121:547–557. https://doi.org/10.1001/archopht.121.4.547

    Article  PubMed  Google Scholar 

  34. Riva CE, Titze P, Hero M, Petrig BL (1997) Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 38:1752–1760

    CAS  PubMed  Google Scholar 

  35. Riva CE, Titze P, Hero M, Movaffaghy A, Petrig BL (1997) Choroidal blood flow during isometric exercises. Invest Ophthalmol Vis Sci 38:2338–2343

    CAS  PubMed  Google Scholar 

  36. Yun C, Ahn J, Kim M, Hwang SY, Kim SW, Oh J (2016) Ocular perfusion pressure and choroidal thickness in early age-related macular degeneration patients with reticular pseudodrusen. Invest Ophthalmol Vis Sci 57:6604–6609. https://doi.org/10.1167/iovs.16-19989

    Article  PubMed  Google Scholar 

  37. Rishi P, Rishi E, Mathur G, Raval V (2013) Ocular perfusion pressure and choroidal thickness in eyes with polypoidal choroidal vasculopathy, wet-age-related macular degeneration, and normals. Eye (Lond) 27:1038–1043. https://doi.org/10.1038/eye.2013.106

    Article  CAS  Google Scholar 

  38. Flower RW, Fryczkowski AW, McLeod DS (1995) Variability in choriocapillaris blood flow distribution. Invest Ophthalmol Vis Sci 36:1247–1258

    CAS  PubMed  Google Scholar 

Download references

Funding

This manuscript is based upon work supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) under Industrial Technology Innovation (10063364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeryung Oh.

Ethics declarations

Conflict of interests

J.O. is a consultant of Topcon Corporation. Other authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

For this type of study formal consent is not required. This retrospective study was in accordance with the ethical standards of the institutional review board and with the 1964 Helsinki Declaration.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, J., Yoo, G., Kim, J.T. et al. Choriocapillaris layer imaging with swept-source optical coherence tomography angiography in lamellar and full-thickness macular hole. Graefes Arch Clin Exp Ophthalmol 256, 11–21 (2018). https://doi.org/10.1007/s00417-017-3814-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3814-7

Keywords

Navigation