Skip to main content

Advertisement

Log in

The microstructure of cornea verticillata in Fabry disease and amiodarone-induced keratopathy: a confocal laser-scanning microscopy study

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to describe cornea verticillata in Fabry disease and in amiodarone-induced keratopathy and to compare the corneal microstructure of both types.

Patients and methods

Ten eyes from ten normal subjects, 28 eyes from 22 patients with Fabry disease confirmed by molecular genetic studies, and 16 eyes from 11 patients receiving amiodarone were examined by slit-lamp microscopy and in-vivo confocal laser-scanning microscopy (CLSM) with following three-dimensional reconstruction of the individual corneal layers. Five patients with Fabry disease were monitored during the course of enzyme replacement therapy (ERT).

Results

Evidence of cornea verticillata was found by slit-lamp microscopy both in patients with Fabry disease and in those with amiodarone-induced keratopathy; CLSM revealed the same pattern of hyper-reflective deposits in the basal cell layer of corneal epithelium in both sets of patients. Microdot changes in the anterior stroma were more prevalent in patients receiving amiodarone but do not presuppose the simultaneous presence of cornea verticillata. The bulbar conjunctiva was found to be normal in all patients. The tarsal conjunctival epithelium contained round hyper-reflective structures, which are also encountered physiologically, but these were more common in patients with Fabry disease. In one out of the five patients examined, monitoring of corneal changes over time during ERT disclosed a regressive tendency of the deposits in the epithelial basal cell layer documented by CLSM.

Conclusions

The microstructural corneal changes typically seen in cornea verticillata in both Fabry disease and in amiodarone-induced keratopathy can be successfully visualized by confocal in-vivo microscopy at the level of the basal cell layer. By analogy, with the grading system for cornea verticillata based on slit-lamp microscopy, staging of these deposits in the basal cell layer can also be performed following in-vivo CLSM. The microdots in the anterior stroma as well as the changes observed in the tarsal conjunctiva should be regarded as having less diagnostic value because such changes may also occur in normal subjects. The utility of CLSM as a tool for monitoring ERT in Fabry disease over time needs to be confirmed in studies with larger sample sizes conducted over a longer period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fleischer B (1910) Über eine eigenartige bisher nicht bekannte Hornhauttrübung. Albrecht Graefes Arch Ophthalmologie 77:136–140 doi:10.1007/BF02229811

    Article  Google Scholar 

  2. François J (1969) Cornea verticillata. Doc Ophthalmol 27:235–251 Den Haag doi:10.1007/BF00208693

    Article  PubMed  Google Scholar 

  3. François J, Hanssens M, Teuchy H (1978) Corneal ultrastructural changes in Fabry’s disease. Ophthalmologica 176:313–330

    PubMed  Google Scholar 

  4. Denden A (1966) Über die Erblichkeit der Dystrophia cornea verticillata. Albrecht Von Graefes Arch Klin Exp Ophthalmol 169:264–271 doi:10.1007/BF00429345

    Article  PubMed  CAS  Google Scholar 

  5. Grau AJ, Schwaninger M, Goebel HH, Beck M (2003) Morbus Fabry: Eine lysosomale Stoffwechselerkrankung mit neuen therapeutischen Möglichkeiten. Nervenarzt 74:489–496 doi:10.1007/s00115-003-1577-3

    Article  PubMed  CAS  Google Scholar 

  6. Witschel H, Meyer W (1968) Der Morbus Fabry als Beispiel einer erblichen Lipoidspeicherkrankheit: neuere Gesichtspunkte zur Pathogenese, Klinik und Morphologie. Klin Wochenschr 46:72–76 doi:10.1007/BF01747471

    Article  Google Scholar 

  7. Mehta A, Ricci R, Widmer U et al (2004) Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur J Clin Invest 34:236–242 doi:10.1111/j.1365-2362.2004.01309.x

    Article  PubMed  CAS  Google Scholar 

  8. Ries M, Ramaswami U, Parini R et al (2003) The early clinical phenotype of Fabry disease: a study on 35 European children and adolescents. Eur J Pediatr 162:767–772 doi:10.1007/s00431-003-1299-3

    Article  PubMed  Google Scholar 

  9. Orssaud C, Dufier JL, Germain DP (2003) Ocular manifestations in Fabry disease: a survey of 32 hemizygous male patients. Ophthalmic Genet 24:129–139 doi:10.1076/opge.24.3.129.15609

    Article  PubMed  Google Scholar 

  10. Sher NA, Letson RD, Desnick RJ (1979) The ocular manifestations in Fabry’s disease. Arch Ophthalmol 97:671–676

    PubMed  CAS  Google Scholar 

  11. Andersen M, Dahl H, Fledelius H, Nielsen N (1994) Central artery occlusion in a patient with Fabry’s disease documented by scanning laser ophthalmoscopy. Acta Ophthalmol (Copenh) 72:635–638

    CAS  Google Scholar 

  12. Nguyen TT, Gin T, Nicholls K et al (2005) Ophthalmological manifestations of Fabry disease: a survey of patients at the Royal Melbourne Fabry Disease Treatment Centre. Clin Experiment Ophthalmol 33:164–168 doi:10.1111/j.1442-9071.2005.00990.x

    Article  PubMed  Google Scholar 

  13. Ohkubo H (1988) Several functional and fluorescein fundus angiographic findings in Fabry’s disease. Ophthalmologica 196:132–136

    Article  PubMed  CAS  Google Scholar 

  14. Sodi A, Ioannidis AS, Mehta A et al (2007) Ocular manifestations of Fabry’s disease: data from the Fabry Outcome Survey. Br J Ophthalmol 91:210–214 doi:10.1136/bjo.2006.100602

    Article  PubMed  Google Scholar 

  15. Eng CM, Banikazemi M, Gordon RE 3rd et al (2001) A phase 1/2 clinical trial of enzyme replacement in Fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet 68:711–722 doi:10.1086/318809

    Article  PubMed  CAS  Google Scholar 

  16. Schiffmann R, Kopp JB, Austin HA 3rd et al (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285:2743–2749 doi:10.1001/jama.285.21.2743

    Article  PubMed  CAS  Google Scholar 

  17. Roussel T, Grutzmacher R, Coster D (1984) Patterns of superficial keratopathy. Aust J Ophthalmol 12:301–316 doi:10.1111/j.1442-9071.1984.tb01174.x

    Article  PubMed  CAS  Google Scholar 

  18. Seiler KU, Thiel HJ, Wassermann O (1977) Die Chloroquinkeratopathie als Beispiel einer arzneimittelinduzierten Phospholipidosis (zugleich ein Beitrag zur Pathogenese der Cornea verticillata). Klin Monatsbl Augenheilkd 170:64–73

    PubMed  CAS  Google Scholar 

  19. Bangham AD, Dawson RMC (1959) The relation between the activity of a lecithinase and the electrophoretic charge of the substrate. Biochem J 72:486–492

    PubMed  CAS  Google Scholar 

  20. Stave J, Zinser G, Grümmer G, Guthoff RF (2002) Der modifizierte Heidelberg-Retina-Tomograph HRT. Erste Ergebnisse einer In-vivo-Darstellung von kornealen Strukturen. Ophthalmologe 99:276–280 doi:10.1007/s003470100535

    Article  PubMed  CAS  Google Scholar 

  21. Eckard A, Stave J, Guthoff RF (2006) In vivo investigations of the corneal epithelium with the confocal Rostock Laser Scanning Microscope (RLSM). Cornea 25:127–131 doi:10.1097/01.ico.0000170694.90455.f7

    Article  PubMed  Google Scholar 

  22. Guthoff RF, Stave J (2006) In vivo micromorphology of the cornea: confocal microscopy principles and clinical applications. In: Reinhard T, Larkin F (eds) Essentials in ophthalmology: cornea and external eye disease. Springer, Berlin Heidelberg New York, pp 173–208

    Chapter  Google Scholar 

  23. Guthoff RF, Wienss H, Hahnel C, Wree A (2005) Epithelial innervation of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy. Cornea 24:608–613 doi:10.1097/01.ico.0000154384.05614.8f

    Article  PubMed  Google Scholar 

  24. Hahnel C, Somodi S, Weiss DG, Guthoff RF (2000) The keratocyte network of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy. Cornea 19:185–193 doi:10.1097/00003226-200003000-00012

    Article  PubMed  CAS  Google Scholar 

  25. Orlando RG, Dangel ME, Schaal SF (1984) Clinical experience and grading of amiodarone keratopathy. Ophthalmology 91:1184–1187

    PubMed  CAS  Google Scholar 

  26. Dolan BJ, Flach AJ, Peterson JS (1985) Amiodarone keratopathy and lens opacities. J Am Optom Assoc 56:468–470

    PubMed  CAS  Google Scholar 

  27. Ciancaglini M, Carpineto P, Zuppardi E et al (2001) In vivo confocal microscopy of patients with amiodarone-induced keratopathy. Cornea 20:368–373 doi:10.1097/00003226-200105000-00007

    Article  PubMed  CAS  Google Scholar 

  28. Rath R, Stave J, Guthoff RF et al (2006) In-vivo-Darstellung des Bindehautepithels: eine vergleichende morphologische Untersuchung mittels konfokaler Laser-Scanning-Mikroskopie und Impressionszytologie. Ophthalmologe 103:401–405 doi:10.1007/s00347-006-1337-4

    Article  PubMed  CAS  Google Scholar 

  29. Fumex-Boizard L, Cochat P, Fouilhoux A et al (2005) Relation entre les manifestations ophtalmologiques et les atteintes générales chez dix patients atteints de la maladie de Fabry. J Fr Ophtalmol 28:45–50 doi:10.1016/S0181-5512(05)81024-1

    Article  PubMed  CAS  Google Scholar 

  30. Mastropasqua L, Nubile M, Lanzini M et al (2006) Corneal and conjunctival manifestations in Fabry disease: in vivo confocal microscopy study. Am J Ophthalmol 141:709–718 doi:10.1016/j.ajo.2005.11.053

    Article  PubMed  Google Scholar 

  31. Tsutsumi A, Uchida Y, Kanai T (1984) Corneal findings in a foetus with Fabry’s disease. Acta Ophthalmol (Copenh) 62:923–931

    Article  CAS  Google Scholar 

  32. Hirano K, Murata K, Miyagawa A et al (2001) Histopathologic findings of cornea verticillata in a woman heterozygous for Fabry’s disease. Cornea 20:233–236 doi:10.1097/00003226-200103000-00028

    Article  PubMed  CAS  Google Scholar 

  33. Slowik C, Somodi S, von Gruben C et al (1997) Erfassung morphologischer Hornhautveränderungen infolge Chloroquintherapie mit Hilfe der konfokalen In-vivo-Mikroskopie. Ophthalmologe 94:147–151 doi:10.1007/s003470050096

    Article  PubMed  CAS  Google Scholar 

  34. Libert J, Tondeur M, Van Hoof F (1976) The use of conjunctival biopsy and enzyme analysis in tears for the diagnosis of homozygotes and heterozygotes with Fabry disease. Birth Defects Orig Artic Ser 12:221–239

    PubMed  CAS  Google Scholar 

  35. Guthoff RF, Baudouin C, Stave J (2006) Atlas of confocal laser scanning in-vivo microscopy in ophthalmology. Springer, Berlin Heidelberg New York

    Google Scholar 

  36. Bastion ML, Mohamad MH (2006) Study of the factors associated with the presence of white dots in the corneas of regular soft contact lens users from an Asian country. Eye Contact Lens 32:223–227 doi:10.1097/01.icl.0000199891.35160.68

    Article  PubMed  Google Scholar 

  37. Macrae WG, Ghosh M, McCulloch C (1985) Corneal changes in Fabry’s disease: a clinico-pathologic case report of a heterozygote. Ophthalmic Paediatr Genet 5:185–190 doi:10.3109/13816818509006132

    Article  PubMed  CAS  Google Scholar 

  38. McCulloch C, Ghosh M (1984) Ultrastructural changes in the cornea and conjunctiva of a heterozygous woman with Fabry’s disease. Can J Ophthalmol 19:192–198

    PubMed  CAS  Google Scholar 

  39. Knop E, Knop N (2005) The role of eye-associated lymphoid tissue in corneal immune protection. J Anat 206:271–285 doi:10.1111/j.1469-7580.2005.00394.x

    Article  PubMed  Google Scholar 

  40. Knop N, Knop E (2000) Conjunctiva-associated lymphoid tissue in the human eye. Invest Ophthalmol Vis Sci 41:1270–1279

    PubMed  CAS  Google Scholar 

  41. D’Amico DJ, Kenyon KR (1981) Drug-induced lipidoses of the cornea and conjunctiva. Int Ophthalmol 4:67–76 doi:10.1007/BF00139581

    Article  PubMed  CAS  Google Scholar 

  42. Morris S, Tranos P, Evans S et al (2003) Ocular manifestations of Fabry disease: effect of enzyme replacement therapy. Acta Paediatr 92(Suppl 443):110–115 doi:10.1080/08035320310000492

    Google Scholar 

Download references

Funding

The study was supported in part by the DFG (Transregio 37, Micro- und Nanosystems in Medicine - Reconstruction of Biological Functions) and by an internal grant from the University of Rostock (FORUN N 889009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Falke.

Additional information

Partly presented during the annual meeting of the German Society of Ophthalmology (DOG) in Berlin 2007.

Competing interests

Andrey Zhivov, MD, and Rudolf F. Guthoff, MD are consultants to Heidelberg Engineering, Heidelberg, Germany. Karen Falke, Armin Büttner MD, Michael Schittkowski MD, Oliver Stachs PhD, Robert Kraak MD, have no financial interests to declare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falke, K., Büttner, A., Schittkowski, M. et al. The microstructure of cornea verticillata in Fabry disease and amiodarone-induced keratopathy: a confocal laser-scanning microscopy study. Graefes Arch Clin Exp Ophthalmol 247, 523–534 (2009). https://doi.org/10.1007/s00417-008-0962-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0962-9

Keywords

Navigation